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ABSTRACT 
 
 

 Epigenetics is defined as the study of heritable changes of DNA.  One such 

component of epigenetic regulation is DNA methylation in humans.  In neoplastic cells 

epigenetic controls are often dysregulated, especially in the promoter region of CpG 

islands.  Global hypomethylation along with region specific hypermethylation of CpG 

islands in the promoter region of tumor suppressor is often indicative of neoplastic cells.  

In cancer, CpG island cytosine hypermethylation has been observed in more than fifty 

genes, including known tumor suppressor and DNA repair genes.   

 Squamous cell carcinoma (SCC), lichen sclerosis (LS), and adjacent normal 

tissues were obtained by radical vulvectomies of over one hundred patients.  Normal 

unassociated tissues were also collected in the same manner.  The disease process of LS 

provides an environment conducive to oxidative damage and increases in free radicals.  

Increased methylation in the promoter regions of specific tumor suppressor and DNA 

repair genes were anticipated to display a progression to malignancy from normal tissue 

to LS to SCC.   

 Hypermethylation patterns of p16, p15, O6 methyl guanine methyl transferase 

(MGMT), glutathione S-transferase pi (GSTP1) were examined by methylation specific 

polymerase chain reaction (MSP) to obtain an etiological model of vulvar cancer.  SCC 

samples exhibited 26% and 34% methylation in p16 and p15 genes.  LS samples 

displayed 22% and 31% methylation in p16 and p15.  The level of hypermethylation in 

SCC and LS associated samples was significantly different from normal samples in both 

p16 and p15 genes, suggesting that silencing of these two genes is an early and important 
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event in vulvar squamous cell carcinoma.  GSTP1 and MGMT were not found to have a 

statistically significant difference in any of the tissues tested.   
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CHAPTER 1 
 

INTRODUCTION AND LITERATURE REVIEW 
 
 
 
1.1  Introduction 

 The modern world has brought about much advancement in the sciences.  These 

advances have brought about many chemicals that are used in processing and 

development of many of the products that we consume regularly.  Due to the advent of 

modern technology, new chemicals enter the environment daily.  Governmental 

regulatory agencies have done much to combat the release of dangerous chemicals, but 

still many of these are often released into the environment at extremely low levels that 

are difficult to monitor and detect.  It has been estimated that the number of organic 

chemicals that are continually being brought into the environment may include more that 

100,000 chemicals (Pitot and Dragan 2001).   One can be exposed to chemicals by many 

routes.  Contamination of waste, water, food supplies, and air are common routes by 

which one might be exposed.  In fact, chemical exposure occurs in every nation to every 

person on a daily basis though multiple pathways.  Developing countries that do not have 

stringent environmental regulations are most concerning.  These countries, along with 

large consumers such as the United States, release contaminants that can often travel 

globally affecting those in other regions of the world.   

 Many of the properties, routes of exposure, and toxicological effects of toxic 

chemicals are known.  Modern science has given us the ability to classify thousands of 

chemicals and determine the detrimental effects of exposure.  Xenobiotics are substances, 

natural and manmade, that are foreign to a biological system (Eaton and Klaassen 2001).  
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The science of toxicology focuses on the adverse effects of xenobiotics on living 

organisms.  Although science, in particular toxicology, has given us a greater 

understanding of exposures and chemicals, much is still not understood.  Modern 

toxicology could not possibly determine all deleterious effects of chemicals on animals, 

humans, or the environment.  Furthermore, regulation regarding the release of known 

hazardous chemicals cannot control all possible exposures.   

 Exogenous agents, including cigarette smoke, dietary factors, occupational and 

environmental chemical exposures, and biologic agents, are causative factors in many 

cancers (Moore, Huang et al. 2003).  Direct associations between exogenous agents and 

cancer were first made over 200 years ago  The first report of carcinogenesis associated 

with chemicals is attributed to the English physician Percivall Pott (Pitot and Dragan 

2001).  Pott described a correlation between scrotum cancer and chimney sweeps, which 

was caused by soot exposure over the course of their lifetime.  Pott was in essence the 

forefather of the branch of toxicology which we refer to as chemical carcinogenesis.  

Chemical carcinogenesis is the study of exogenous chemicals and their ability to induce 

cancer. 

1.2 Genetics vs. Epigentics 
 
 The genome is controlled by many processes which regulate gene expression.  It 

is now evident that two forms of information are encoded in the genome; genetic and 

epigenetic.  Genetic information, which is organized using nucleotide bases, provides the 

essential instructions for manufacturing proteins.  Epigenetic information provides 

additional instructions that facilitate how genetic information will be utilized.  Epigenetic 

changes are those that are defined as heritable changes of DNA, not involving changes in 
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DNA sequence, that regulate gene expression (Dunn, Verma et al. 2003).  The far more 

recent study of epigenetics is beginning to answer many questions about gene regulation 

that genetics could not explain.  DNA methylation and histone modification are the major 

epigenetic mechanisms that can affect gene expression in mammals(Wolffe and Matzke 

1999). 

1.3 DNA Damage 

DNA damage can be induced by one of two phenomenons: damage from 

endogenous agents and mistakes occurring in cell replication and repair.  Agents that 

damage DNA include ionizing radiation, ultraviolet light, chemicals, and others such as 

hydrocarbons.  These chemicals react with DNA and may cause damage such as adduct 

formation, oxidative alteration, and strand breakage (Gregus and Klaasen 2001).  

Damage to DNA usually involves the alteration of genes in somatic cells.  

Somatic cell mutations affect a given cell and every cell in its line after division, as 

opposed to germ cells which affect every cell in an individual’s offspring.  Somatic cell 

mutations occur during chromosomal replication when cells are dividing.  During normal 

chromosomal replication, nucleotides are copied within cells with great precision.  In the 

course of copying a few billion nucleotides, fewer than one hundred errors are likely to 

be made, most of them inconsequential (Varmus and Weinberg 1993).  Table 1.1 lists 

some of the genetic variations that might occur in the genetic sequence if replication is 

not faultless.   
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Table 1.1  DNA mutations 

Mutation 
Classification Mutation Type  Effects 
Genetic Single Base Substitution (Missense) Amino acid substitution, new 

gene product with altered 
activity 

 Single Base Substitution (Nonsense) Premature translational 
termination, truncated protein, 
altered regulation of normal 
gene product 

 Frame Shift Shift in reading frame, Multiple 
amino acid substitutions, 
Premature translational 
termination 

 Insertion Addition of multiple amino 
acids, Transcriptional and/or 
translational termination 

 Inversion Amino acid substitution 

 Deletion Loss of amino acids, Shift of 
reading frame 

 Double Strand Breaks Premature translational 
termination 

 Single Strand Breaks Premature translational 
termination 

 Translocation Addition of multiple amino 
acids, Loss of amino acids, 
Transcriptional and/or 
translational termination or up 
regulation, chimeric gene 
products 

 Amplification Addition of multiple amino 
acids, Transcriptional and/or 
translational up regulation 

 Aneuploidy Loss or Gain of Chromosomes 

 Adduct Secondary Alterations 

   
Epigenetic Methylation Up-regulation or down-

regulation of gene expression 

 Acetylation Up-regulation or down-
regulation of gene expression 
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If a mistake has occurred during replication, the cell copes with the DNA damage 

in one of three ways.   In the case of extensive damage the cell will undergo a death 

pathway.  If the damage is extensive necrosis will occur.  Necrosis is a pathological 

process in which cells lose membrane integrity and die.  The loss of integrity often 

induces an inflammatory response.  Apoptosis is a programmed cell death that results 

from an energy dependent, endogenous cellular process.  Membrane integrity is 

preserved and inflammatory reactions are minimized.  In the event that the damage is less 

severe, the cell enters one of its many repair processes that are part of a generalized 

cellular DNA damage response network (Preston and Hoffmann 2001).   

1.4  DNA Repair 
 

Three general categories of recovery phenomena are direct reversal, excision 

repair, and tolerence (Cleaver 1984).  All three deal with damaged DNA bases and DNA 

strand breaks.   

Direct chemical reversal is a mechanism that is very common in the repair of 

damaged bases.  It often involves enzymes such as DNA photolyase which cleave 

adjacent pyrimidines dimerized by UV light (Gregus and Klaasen 2001).  Minor adducts, 

including methyl groups, are often removed by DNA repair proteins encoded by the 

methyl guanine methyl transferase (MGMT) gene (Pitot and Dragan 2001).  

Excision Repair includes two forms of repair: base excision repair and nucleotide 

excision repair.  Base excision repair, like direct chemical reversal, removes the damaged 

base by a DNA glycosylase.  The glycosylase removes the damaged base, creating a gap 

in the sequence.  DNA polymerase then fills in the gap with the correct base, and then the 

break is ligated to the parental strand.  Nucleotide excision repair differs from Base 
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excision repair in that a larger segment of DNA is removed even if only one base is to be 

corrected.  Nucleotide excision is responsible for removal of most bulky adducts from 

DNA.  In this case, the DNA is unwound at the site of repair producing a bubble.  

Enzymes then remove the affected base and several bases surrounding it.  Using the 

opposite strand as a template, DNA polymerase fills in the excised nucleotides with 

correct matches.  DNA binds the new strand into the backbone.  

Mismatch repair occurs after DNA replication and is a final check of the 

sequence.  It deals with correcting mismatches of normal bases formed during DNA 

replication, genetic recombination, and as a result of DNA damage induced by chemical 

and physical agents (Preston and Hoffmann 2001).  The strand is checked for base pair 

matches, using enzymes involved in excision repair and other specialized enzymes.   

DNA strand breaks are corrected according to the type of break.  Single-strand breaks are 

corrected using the same systems as used in Base-Excision Repair.  Double-strand breaks 

are repaired via two methods: direct joining and homologous recombination.  Direct 

joining of the broken ends requires a protein that recognizes and binds the exposed ends, 

finally bringing them together for ligating.  Errors in direct joining are associated with 

translocations that are associated with many cancers.   Homologous recombination uses 

information found in the sister chromatid, or a homologous chromosome, to repair the 

break.  Two proteins used in homologous recombination are encoded by the tumor 

suppressor genes BRCA-1 and BRCA-2.  Research has shown that inherited mutations in 

either of these genes predispose women to breast cancer. 

Tolerance mechanisms evade the damage without making repairs (Pitot and 

Dragan 2001).  If the damage in the DNA strand cannot be corrected immediately, it may 
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be left.  In the case of DNA damage, such as a pyrimidine dimer for example, DNA 

synthesis may be blocked.  DNA replication may be able to resume downstream of a 

dimer, leaving a gap of single-stranded unreplicated DNA (Montelone 1998).  If the cell 

divides, by filling in the gap, the dimer may be carried on through cell division. 

1.5 Genomic Instability 

Genomic instability is characterized by an increased frequency of mutations such 

that an instable genome results.  Many pathways to genomic instability have been 

established.  Germ line mutations and somatic mutations have been implicated in 

dysregulation of cell cycle controls.  Cell cycle checkpoint systems are employed by the 

cell to maintain genomic integrity and proper cellular function.  In eukaryotes, two 

checkpoints prevent chromosome segregation when DNA replication is inhibited or DNA 

is damaged (Murakami and Nurse 2000).  One of the checkpoints works before entry into 

mitosis and the other before chromosome duplication.  If the checkpoint systems are not 

working properly, then full complements are not transferred to daughter cells during 

replication.   

In the event that a gene is mutated in the cell, or if a mutated gene is inherited our 

diploid nature initially will minimize the impact, except for dominant cases (Anderson 

2001).   The cell will use the genetic information from the remaining normal allele.  If the 

normal allele is also lost, genomic damage is initiated.  If severe damage is acquired in an 

essential gene, the cell will go through a death pathway.  If the damage is not severe 

enough to initiate a death pathway then errors will continue to be made in the genome 

resulting in increase instability. 
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1.6 Carcinogenesis 

Cancers acquire multiple genetic changes in DNA nucleotide sequence often 

resulting in chromosomal abnormalities.  Many cancers also undergo epigenetic changes 

that can have profound effects on gene expression (Jones and Baylin 2002).  It has been 

suggested that the acquisition of some form of inherent genomic instability (defined as a 

mutator phenotype of hypermutation) is a hallmark of tumorigenesis (Hanahan and 

Weinberg 2000).  It is assumed therefore, that genomic instability is the driving force 

behind tumor formation.  Arguments have been raised by some that genomic instability is 

not necessary for tumorigenesis to occur.   Sieber et. al. argue that early tumors grow 

with a normal mutation rate (Sieber, Heinimann et al. 2003).  Genomic instability is then 

acquired and spreads throughout the tumor, therefore giving it its characteristic growth 

advantage.  Vogelstein presented a colorectal cancer progression pathway, which defined 

cancer as a clear, well-defined process from normal to cancerous cells due to the 

acquisition of genomic instability.  Some believe cancer formation to be a much more 

chaotic process, with many routes to genomic instability, undergoing many less 

significant events.  Factors such as genomic destabilization, Darwinian evolution, and 

natural selection for invasive, proliferating populations of cells are the essence of cancer 

(Anderson 2001). 

 
1.7 Epigenetic Information 

The three main types of epigenetic information are cytosine DNA methylation, 

genomic imprinting, and histone modifications (Feinberg and Tycko 2004).   
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1.8 Cytosine DNA Methylation 

Methylation of cytosine is the only naturally occurring modification of DNA in 

mammals (Moore, Huang et al. 2003) and is perhaps the most critical component of 

epigenetic regulation in mammalian cells.  In higher order mammals DNA methylation 

usually occurs at CpG dinucleotides which are frequently clustered in regions of about 1-

2kb in length.  These CpG islands are located in or near the promoter and exon regions of 

genes (Laird 1997; Jones and Laird 1999; Esteller and Herman 2002; Li, Hursting et al. 

2003).  Abnormal DNA methylation patterns are a hallmark of most cancers, including 

those of high proportion in the United States such as colon, lung, prostate, and breast 

cancer (Baylin, Herman et al. 1998; Esteller, Corn et al. 2001; Ross 2003).  Common 

characteristics of mammalian tumor cells include widespread global hypomethylation and 

region specific hypomethylation and hypermethylation.   

Cytosine methylation is catalyzed by one of three DNA transferases (DNMT1, 

DNMT3A, DNMT3B), which transfer methyl groups from S-adenosylmethionines (SAM) 

to the 5’ carbon of cytosine residues (Li, Hursting et al. 2003).  DNMT1 is the most 

abundant methyltransferase and is responsible for global DNA methylation after 

replication.  Figure 1.1 illustrates the mechanism of DNMT methylation via the SAM 

pathway (Strathdee and Brown 2002). 

Mechanisms for promoter hypemethylation and the resulting loss of gene 

expression are being investigated.  The thought is that de novo methylation initiates the 

silencing of genes.  The methylated gene then recruits methyl binding proteins (MBP) 

and histone de-acetylases.  A condensed chromatin structure results that silences the 

associated gene.   



www.manaraa.com

 10 

 

 
 

Figure 1.1  The mechanism of DNMT methylation (Strathdee and Brown 2002). 
 
1.8.1 Regional Hypomethylation 

Loss of DNA methylation at CpG dinucleotides was the first epigenetic 

abnormality to be identified in cancer cells (Feinberg and Tycko 2004).  

Hypomethylation of DNA has been recognized to have mechanistic implications in the 

genome. 

Hypomethylation has been associated with cancer, by activating proto-oncogene.  

Proto-oncogene are normally methylated and silenced within the genome.  Cancer has 

been associated with the activation of proto-oncogenes. The oncogene H-ras is a classic 

example of a gene affected by hypomethylation (Feinberg and Tycko 2004).  H-ras 

encodes a protein that regulates signal transduction to the cell nucleus, regulating cell 

division.  A possible consequence of hypmethylation in the genome is genomic 

instability, resulting in a loss of heterozygosity (LOH) (Chen, Pettersson et al. 1998).  

Cytosine 

5-Methyl-
cytosine 

DNMT 
SAM-CH3 
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LOH is characterized by the loss of one allele at a specific locus (site on the 

chromosome) which can activate proto-oncogenes.   

1.8.2 Regional Hypermethylation.   

Increased methylation is observed in the promoters of many genes in cancer cells 

(Dunn 2003).  This promoter methylation has been shown to correlate with inhibition of 

transcription (Verma, Dunn et al. 2003) and the inactivation of tumor suppressor genes, 

which correlates with cancer progression. 

A small set of cellular genes are the targets for genetic alterations that initiate 

neoplastic transformations (Gregus and Klaasen 2001).  Tumor-suppressor genes are 

crucial in the regulation of cell division.  Tumor-suppressors encode proteins that inhibit 

the progression of cells in the division cycle (Gregus and Klaasen 2001).  Tumor 

suppressors, unlike proto-oncogenes, are activated in the normal genome.  When DNA 

damage is detected by a tumor suppressor gene it can either halt cell division until the 

damage is corrected, or stimulate the cells to go through an apoptotic pathway.  When 

tumor suppressors are not functioning correctly, cells proliferate in an uncontrolled 

fashion accumulating further DNA damage.  Inactivation of tumor suppression may be 

accomplished by faulty nucleotide-excision repair, base-excision repair, mismatch repair, 

chromosomal repair, or changes in the status of CpG-island methylation.  A normal cell 

has two alleles of a tumor suppressor gene.  Most tumor suppressor genes are recessive 

and must be inactivated by a two hit method, which disables both alleles.  Knudsons’s 

two-hit hypothesis is detailed in Fig. 1.2 (Jones and Laird 1999; Jain 2003).  Inactivation 

of tumor suppressor genes is associated with considerable tissue specificity for cancer 

development (Pitot and Dragan 2001).   
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 The best recognized tumor suppressor involved in carcinogenesis is p53.  The p53 

gene is a tetramer that is an exception to the two-hit hypothesis.  Because of its structure 

it can be inactivated by one hit.  p53 is activated in response to several malignancy-

associated stress signals, resulting in the inhibition of tumor-cell growth (Balint and 

Vousden 2001; Vousden and Lu 2002).  p53 may respond to stress using a variety of 

responses such as halt of cell proliferation, apoptosis, and repair of genetic damage.  

Tumor mutations associated with p53 are almost completely single base substitutions.  

Mutations in the p53 gene are found in fifty percent of human tumors and in a variety of 

induced cancers (Gregus and Klaasen 2001).   

1.9 Genomic Imprinting 

Genomic imprinting is a parent-of-origin-specific allele silencing, or relative 

silencing of one parental allele compared with the other parental allele (Feinberg and 

Tycko 2004).  DNA methylation is a vital molecular mechanism of imprinting.  It is 

DNA methylation that marks the imprinted genes differently on egg and sperm.  

Inheritance of these epigenetic marks leads to differential gene expression (Reik, Collick 

et al. 1987).  The germ line has the role of resetting imprints such that in mature gametes 

they reflect the sex of that germ line (Reik and Walter 2001). 

A number of pediatric solid tumors are associated with LOH of genes that are 

known to be imprinted in normal tissue (Dunn 2003).  One mechanism for loss of 

imprinting (LOI) is hypermethylation of the tumor suppressor and transcription regulator 

H19 (Verona and Bartolomei 2003), which allows activation of the normally silent 

maternal allele of IGF2 (Cui, Onyango et al. 2002).   
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Figure 1.2  Knudson’s hypothesis.  (Adapted Jones and Laird 1999) 
 
1.10 Histone Modifications  

The typical eukaryotic chromosome contains 1 to 20cm of DNA packed into a 

dense structure called chromatin.  Histones are proteins that aggregate with DNA to make 

the basic structural subunit of chromatin which are called nucleosomes.  The amino-

terminal tails of histones protrude from the nucleosome and are subject to chemical 

modifications including phosphorylation, acetylation, and methylation (Jenuwein and 

Allis 2001; Kondo, Shen et al. 2003).  The histone code uses chromatic location to 
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determine the expression status of individual genes.  Modifications may alter gene 

expression by altering the regulatory factors associated with chromatin.  DNA 

methylation enables the conversion of histones to a nonacetylated state through histone 

deacetylases (HDAC), which is thought to result in the production of compacted 

chromatin that is resistant to transcription (Nan, Campoy et al. 1997; Nan, Ng et al. 

1998).  

Histone acetylation is maintained by a balance between the activities of two 

enzyme families, the histone acetyltransferases and histone deacetylases (HDACs) 

(Turner 1998).  A lack of balance in the two enzymes can lead to changes in the genome.  

The silencing of gene expression is associated with deacetylated histones, which are often 

found to be associated with regions of DNA methylation as well as methylation at the 

lysine 4 residue of histone 3 (Thiagalingam, Cheng et al. 2003).  Histone H3-lysine 9 

methylation has been associated with gene silencing in cancer cells of the tumor 

suppressor genes p14ARF and p16INK4 (Nguyen, Weisenberger et al. 2002).  Death-

associated protein kinase (DAPK) is a tumor suppressor associated with positive 

regulation of apoptosis and tumor necrosis factors.  DNA methylation and histone 

deacetylation were found to be associated with silenced DAPK expression in colorectal 

and gastric cancers (Satoh, Toyota et al. 2002).    

1.11 Causes of Aberrant Methylation 

Possible causes of atypical methylation within the genome are numerous.  Links 

to diet and the polymorphism of methylenetratrahydrofolate reductase (MTHFR) have 

been established in increased colorectal cancer (Dunn, Verma et al. 2003; Feinberg and 

Tycko 2004).  Folate is an important mediator in methyl group metabolism, which is an 
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important factor in the formation of methyl donor S-adenosylmethionine (SAM).  A lack 

of folate could result in hypomethylation.  The resulting hypomethylation could 

contribute to cancer risk by increasing the rate of chromosomal breakage caused by uracil 

misincorporation during DNA synthesis or by decreasing DNA methylation (Herbert 

1986; Moore, Huang et al. 2003). 

De Novo methylation of genes is considered to be primarily an epigenetic event, 

but methylation can also be influenced by exogenous factors.  Many common 

environmental carcinogens have been shown to alter DNA methylation patterns.  An 

association between nickel exposure, epigenetic silencing of the tumor suppressor gene 

(p16), and tumorigenesis was reported (Sutherland and Costa 2003).  Arsenic and other 

elements, found in environmental settings induces hyper- and hypomethylation in vivo 

(Moore, Huang et al. 2003).  Chemotherapeutic agents (Moore, Huang et al. 2003), 

tobacco smoke, and numerous viruses such as human papilloma virus (Muegge, Young et 

al. 2003; Verma 2003) have all been associated with aberrant methylation and cancer.   

1.12 Properties and Processes of the Epidermis 

The epidermis is a stratified squamous epithelium consisting of four 

biochemically and morphologically distinct layers (Serewko, Popa et al. 2002).  The 

basal layer consists of a single layer of proliferating keatinocytes attached to the 

basement membrane.  When the basal cells commit to terminal differentiation they 

withdraw from the cell cycle and down regulate specific genes such as the cyclin 

dependent kinase-1 (cdk-1.)  These differentiating cells then pass into the suprabasal 

layers to form the spinous and granular layers that express genes specific to 

differentiating cells.  The granular cells commit to apoptosis, thus forming the cross-
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linked envelope characteristic of the stratum corneum (Serewko, Popa et al. 2002).  This 

complex process requires the coordinated activation and repression of specific genes.  

Disruption of cell differentiation is known to accompany neoplasia (Hartwell and Kastan 

1994).  Several pathways are present that can alter genes that regulate cellular processes, 

such as growth regulation, apoptosis, and terminal differentiation (Serewko, Popa et al. 

2002).  Tumor suppressors and DNA repair genes are know to control such processes.   

1.13 Lichen Sclerosus (LS) 

Lichen sclerosus is a dermatologic inflammation affecting genital and perianal 

areas.  It is a chronic, destructive dermatosis with a predilection for the vulva (Carlson, 

Lamb et al. 1998).  LS is a non-contagious condition, which is classified into the general 

category of vulvodynia (chronic vulvar pain).  This non-neoplastic disorder is 

characterized by a white thickening of the skin of the vulva, which eventually leads to 

scaring and lesions.  It is usually localized to the perineum, labia, fourchette, and clitoris, 

and does not affect the vagina.  Symptoms include pruritis (severe itching), burning pain, 

dyspareunia (pain with intercourse), vaginal discharge, and anal or genital bleeding 

(Loening-Baucke 1991).  Most frequently, treatment involves the use of topical 

corticosteroids.  Persistence despite most medical treatments is problematic (Carlson, 

Ambros et al. 1998).   

Symptomatic vulvar lichen sclerosus typically affects peri-menopausal women 

with a mean age of 54 years (Wallace 1971; Carlson, Ambros et al. 1998), but may also 

affect prepubertal girls (Wallace 1971; Carlson, Ambros et al. 1998; Neill, Tatnall et al. 

2002).  The etiology of LS remains unknown, although infectious, genetic, and 

autoimmune causes have been suggested (Nyirjesy 2002).  Of particular concern in 
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diseases such as LS is the importance of chronic inflammation and scarring in relation 

oncogenesis (Carlson, Ambros et al. 1998).  LS is know to have numerous macrophages 

(Carlson and Edenhamn 2000) which could produce free radicals that are known 

mutagens possibly leading to genetic or epigenetic alterations.  Advancement to 

squamous cell carcinoma (SCC) could occur via genetic instabilities in tumor suppressors 

and other genes. 

SCC is the most common malignancy described in involvement with LS.  Reports 

of squamous cell carcinoma arising from patients with LS in a clinical setting are 

prevalent.  Agreements between the two differ greatly.  One  such study found that the 

magnitude of this risk is about 5% or less in patients with lifelong LS (Wallace 1971; 

Derrick, Ridley et al. 2000; Neill, Tatnall et al. 2002).  Another study conducted by 

(Carlson, Ambros et al. 1998) found a higher incidence.  It was found that of patients 

with symptomatic LS, 21% developed invasive SCC.  Of those developing SCC 9% were 

preceded by vulvar intraepithelial neoplasia (VIN) which is a precursory lesion of SCC.  

However, histological evaluations of SCC have found that about 60% occur on a 

background of LS (Vilmer, Cavelier-Balloy et al. 1998), leading one to contemplate the 

association between LS and oncogenesis. 

1.14 Squamous Cell Carcinoma 

 Squamous cell carcinoma of the vulva is a cancerous tumor that can affect women 

of all ages.  Approximately 90% of vulvar tumors are squamous cell carcinoma (Canavan 

and Cohen 2002).  Its incidence is about one-eighth that of cervical carcinoma, but 

increases as a function of age to a peak of 20 per 100,000 after age 75 (Mabuchi, Bross et 

al. 1985; Brinton, Nasca et al. 1990).  It is characterized by red, pink, or white nodules or 
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plaques, appearing on the labia, clitoris, or the perineum.  A wart-like or rough ulcerated 

appearance is common.  Symptoms are similar in nature to LS, but often more severe.  

SCC is usually slow growing and may begin with a precancerous condition known as 

vulvar intraepithelial neoplasia (VIN) or dysplasia (Carlson, Ambros et al. 1998). 

 There are two clinicopathological types of vulvar squamous cell carcinoma. 

Human papillomavirus (HPV)-positive and HPV-negative, which can be distinguished to 

some degree on routine histology (Scurry and Vanin 1997).  Table 1.2 depicts the 

characteristics of the two types (Crum 1992). 

Table 1.2 Models of vulvar cancer (Adapted Crum, et al, 1992.) 
Characteristic Type 1 Type 2 
Age 
 
Pre-existing lesion 
 
 
Cervical neoplasia 
 
Cofactors 
 
 
HPV DNA 
 
History of condyloma 
 
History of STD 
 
Cigarette smoking 

Younger (35 to 65 years old) 
 
Vulvar intraepithelial neoplasia  
 
High association 
 
Age, immune status, viral integration, 
possibly mutated genes 
 
Frequent (>60 percent) 
 
Strong association 
 
Strong association 
 
High incidence 

Older (55 to 85 years old) 
 
Vulvar inflammation, lichen 
sclerosis, differentiated VIN 
 
Low association 
 
Vulvar atypia, possibly 
mutated genes 
 
Seldom (<15 percent) 
 
Rare association 
 
Rare association 
 
Low incidence 

   

 

1.15 Polymerase Chain Reaction 

 The polymerase chain reaction is a commonly used method in molecular genetics.  

It is a powerful method by which a target sequence of nucleic acids may be amplified.  

DNA sequences usually 50 to 2,000 nucleotides long are “selected” from an original 

template such as genomic DNA using oligonucleotide primers.  The DNA is amplified in 
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a solution of reagents that enhance the effectiveness of amplification.  PCR reactions 

include taq DNA polymerase, MgCl2, PCR buffer, deoxynucleotide triphosphates 

(dNTP’s), and template DNA.  A DNA thermal cycler is used to provide varying 

temperatures for the denaturation, annealing, and extension of the DNA sequences.  

Amplification is carried out over numerous cycles to produce the desired number of 

copies.  Each DNA template produces one copy for each cycle.  In the following cycle 

the new strand along with its template act as a template, so in theory the DNA of interest 

will double with each cycle performed.  PCR will amplify DNA exponentially providing 

the essential reagents and DNA are present.   

Oligonucleotide (oligo) primers are necessary for polymerase chain reaction. 

They are usually short sequences 20-30 nucleotides in total length that are created in a 

laboratory.  In standard PCR two primers are used.  These primers, referred to as forward 

and reverse are used to target the nucleotides at either end of the targeted DNA sequence.   

Nested PCR adds a step to increase annealing efficiency which is especially 

useful when final sequences of less than 200 base pair are expected.  The two-stage 

nested PCR approach improves the sensitivity to detect methylated alleles by greater than 

50 fold over the original method (Palmisano, Divine et al. 2000).  This first PCR uses 

oligos that amplify a region of DNA that is slightly larger than the final product.  This 

region overlaps the final sequence by 50 to 100 base pair on both ends of the forward and 

reverse primer.  A second nested PCR is then run using the product from the first PCR as 

template.  This run actually produces the final section (gene) of interest.  Figure 1.3 

illustrates PCR. 
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Figure 1.3  Polymerase Chain Reaction 
 
1.16 Methylation Specific Polymerase Chain Reaction (MSP) 
 

The most widely used assay for detecting methylation is methylation-specific 

polymerase chain reaction (MSP), developed at The Johns Hopkins University (Herman, 

Graff et al. 1996).  This method involves the investigation of the CpG islands by utilizing 

slight variations in traditional PCR methods.  After isolation the DNA is treated with 

sodium bisulfite to convert all unmethylated cytosines to uracils.  Methylated cytosines 

remain intact.  PCR is then carried out using primers that are specific for either the 

methylated or unmethylated DNA.  If the primer has matched successfully then 

amplification will occur.  Electrophoresis is then used to resolve the amplification 
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products on a 2-3% agarose gel.  If methylation is present bands will be seen when 

amplified with a methylated primer.  

 
1.17 Gene Selection 
 
 The purpose of this study was to determine the correlation of vulvar cancer with 

promoter methylation of selected genes.  Based on published data MSP was chosen as an 

effective means of evaluating the promoter region of tumor suppressors.  Two tumor 

suppressors and two DNA repair genes that are implicated with many types of cancer 

were chosen for this study based on published data.  The two tumor suppressors chosen 

were p16 (INK4a) and p15 (INK4b).  The two DNA repair genes selected were O6 

methyl guanine methyl transferase (MGMT) and glutathione S-transferase pi (GSTP1).  

Table 1.3 lists genes tha t are commonly affected by aberrant methylation. 

 1.17.1 p16 (INK4a) and p15 (INK4b) 
 

Loss of cell cycle regulation through changes in the cyclin D/retionoblastoma 

(pRb) pathway is common in human neoplasia (Carlson, Ambros et al. 1998; Wong 

2001).  p16 encodes cyclin-dependent kinase (CDK) inhibitors 4 and 6, which negatively 

regulate G1-S transition of the proliferating cells by contributing to the maintenance of 

pRb in an active state  (Hartwell and Kastan 1994; Morgan 1995; Xing, Nie et al. 1999).   

A lack of the p16 inhibitory effect on CDK enzymes predisposes cells to 

uncontrolled growth.  Previous work on epigenetic silencing of p16(INK4a) in vulva 

disorders detected aberrant methylation in 68% of VC, 69.2% of VIN, and 42.8% of LS 

cases (Lerma, Esteller et al. 2002) using MSPCR.  Another study found p16 silenced in 

36% of vulvar SCC cases (Gasco, Sullivan et al. 2002).  Epigenetic inactivation most 
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likely represents an early event that may occur in clinically benign lesions such as LS 

(Lerma, Esteller et al. 2002). 

 p15 has much in common with it’s sibling p16.  It is not only adjacent to p16 on 

chromosome 9p21, but it also encodes a cyclin-dependent kinase inhibor.  p15 is unlike 

p16 in that it is pRb independent.  Its mode of action is to bind to the CDK enzyme 

preventing p27 association (Xing, Nie et al. 1999).  p27 then binds to and inactivates the 

cyclin E-CDK2 complex, thereby blockin the cell cycle at the G1-S boundary 

(Reynisdottir and Massague 1997). 

1.17.2 O6 Methyl Guanine Methyl Transferase (MGMT) 
 

 MGMT plays a critical role in DNA repair pathways by removing alkyl adducts 

from methyl groups.  The MGMT DNA repair protein is responsible for the removal of 

mutagenic and cytotoxic adducts from the O6 position of guanine (Esteller, Toyota et al. 

2000).  O6-methylguanine creates a mispair with thymine during DNA replication and if 

the adduct is not removed a conversion from a GàC pair to an AàT pair results 

(Esteller, Toyota et al. 2000).  The loss of expression however, is almost always due to 

epigenetic silencing of the gene via methylation pathways.   

 1.17.3 Glutathione S-transferase pi (GSTP1) 

GST genes comprise many isoenzymes that are essential in cellular protection 

against mutagenic and carcinogenic agents.  Repression of transcription accompanying 

CpG island hypermethylation has been predisposed to be mediated by methyl-CpG 

binding domain (MBG) proteins (Bakker, Lin et al. 2002).  In essence the MBG protein 

competes for access to the promoter region of the gene so that the GSTP1 encoded 

protein cannot bind.   
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Table 1.3 Genes affected by CpG methylation.   
 
Gene Function Associated Tumor 

Types 
Notes 

 
p16INK4a 

 
Encode cyclin-dependent 
kinase inhibitors, which 
regulate G1-S transition, 
associated with aberrant p53 
expression and associated 
apoptosis 

 
Lung (non-small cell 
lung cancer), vulvar, 
colon, lymphomas, 
bladder, esophagus, 
stomach, renal, others 

 
Epigenetic factors 
more significant than 
genetic mutations 

 
p15 
 

 
Encode cyclin-dependent 
kinase inhibitors, which 
regulate G1-S transition.  
Independent of pRb 

 
Acute myeloid 
leukemia, Acute 
lymphoblastic 
leukemia, 
glioblastoma brain 
cancer, colon, lung, 
breast, others 

 
p15 is located on 
chromosome 9p21 
with p16, but 
methylation of both 
genes is rare 

 
GSTP1 
 
 
 
 
 
 

 
Enzymes involved in the 
detoxification of xenobiotics 
and oxygen radicals, may 
help defend hepatocytes 
against reactive oxygen 
species 

 
Prostate, liver, colon, 
breast, kidney, others 

 
Located on 
chromosome 11q13, 
not traditionally 
considered to be a 
tumor suppressor, but 
high levels of 
hypermethylation are 
found in solid tumors 
 

MGMT DNA repair protein, which 
removes alkyl adducts from a 
methyl group to an active 
cytosine in its own sequence.  
The reaction inactivates the 
MGMT molecule for each 
lesion repaired 

Brain, head and neck, 
breast, prostate, 
renal, colon, non-
Hodgkin’s lymphoma, 
others  

Associated with the 
DNA 
methyltransferase 
deficient phenotype, 
Increased K-ras 
mutation 
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CHAPTER 2 
 

MATERIALS AND METHODS 
 
 
 
2.1 Genomic DNA 

Normal and tumor vulvar tissues were obtained via radical vulvectomies from 

over 100 patients.  Due to the nature of a radical vulvectomy surrounding normal tissues, 

lichen sclerosis tissues, and other tissue types were obtained when in close proximity to 

the squamous cell tissue.  In addition to the collection of tumor and the associated 

surrounding tissue normal tissue was collected from five patients with no apparent vulvar 

ailment.  This gave the opportunity to evaluate true normal tissue as an unmethylated 

same tissue control.  The patient tissues were histologically evaluated by Dr. Andrew 

Carlson of Albany Medical College and the corresponding histological condition was 

noted.  The tissues for each patient were then separated according to condition and 

packaged for various analyses.  Tissues that were to be analyzed in by us were stored at -

80C and shipped on dry ice. Upon arrival the samples were again placed in a freezer at -

80C.  Dr. Carlson has analyzed the tissues for protein expression and will be comparing 

this data with the corresponding methylation data.   

2.2 DNA Isolation 

DNA was isolated from the specimens by standard phenol and chloroform 

extraction procedures (Xing, Nie et al. 1999).  This protocol is the most commonly used 

method of purifying and concentrating DNA preparations.  Approximately 500 mg of 

tissue was minced and then frozen in liquid nitrogen.  The tissue was then crushed under 

liquid nitrogen using a mortar and pestle until a fine powder was obtained.  The tissue 
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was then suspended in digestion buffer to approximately 1mL and left to digest at 50°C 

for 12 hours in capped tubes.  The digest was extracted with phenol chloroform and cold 

ethanol.  The DNA precipitates were then centrifuged and the supernatant containing the 

DNA was collected.   

The second method used for genomic DNA extraction was the QIAamp DNA 

Mini Kit (Qiagen).  The QIAamp kit was used as an efficient and quicker alternative 

which was useful due to the large number of samples that were isolated.  The samples 

were then cleaned using standard ethanol precipitation and re-suspended in TE buffer. 

2.2.1 DNA Quantification 
 

 Spectrophotometric detection is the most widely used method to determine DNA 

concentration(Adams 2003).  The isolated DNA was analyzed for concentration and 

purity using a Cary 100 Bio spectrophotometer.  Of the various methods is the calculation 

of the ratio of absorbance at 260 nm to the absorbance at 280 nm with a 1cm path length.  

The ratio is used to approximate the percentage of absorbing molecules in the sample that 

are protein.  A sample of pure nucleic acid will have an absorbance ratio of 1.95.  Pure 

protein on the other hand will absorb at 0.57.  For this study the sample absorbances all 

fell very close to the 1.9 value, which confirms a relatively pure nucleic acid sample.   

2.3 Bisulfite Modification  

Approximately 2µg of DNA was denatured in a final concentration of 0.2M 

NaOH for 10 min. at 37C to create single stranded DNA.  Thirty microliters of 10mM 

hydroquinone and 520 µl of freshly prepared 3M sodium bisulfite (pH 5.0) was added, 

then samples were covered with mineral oil and and incubated at 50C for 16 hours.  The 

DNA was then purified using the Wizard DNA purification kit (Promega) and 
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resuspended in 50ul of heated water (60-70C).  NaOH was added to a final concentration 

of 0.3M and glycogen (Boehringer) was used as a carrier.  DNA was then ethanol 

precipitated as normal and resuspended in 20µl of water.  Samples were stored at -80C 

until use.   

2.4 Reagents 
 
 Reagents were chosen based on peer reviews of publications from labs that 

employ the methylation specific polymerase chain reaction assay (MSP).  Amplitaq Gold 

(Applied Biosystems) is the thermostable taq polymerase that was chosen for the assay.  

This polymerase is often used in sensitive applications to reduce all possibility of non-

specific annealing of primers which might cause false positive results.  The primers used 

in the assay were purchased from BioServe Biotechnologies (Laurel, MD).  Primers were 

diluted upon arrival with TE buffer to 0.5 nanomoles per microliter.  The four dNTP’s 

used in were diluted in water to a working concentration of 25mM each.  Unmethylated 

and methylated controls were purchased from Serologicals Corporation (United 

Kingdom).  All reagents were stored in a standard freezer at -20C and thawed on ice 

before use. 

2.5 Methylation Specific PCR Primer Selection 

 Gene sequences were obtained by searching the PubMed nucleotide database, 

which is a service of the National Library of Medicine 

(http://www.ncbi.nlm.nih.gov/PubMed/.)   

Nested PCR was chosen as the method of choice for three of the four sites.  This 

“two stage” PCR approach improves the sensitivity to detect methylated alleles by greater 

than 50 fold over the original method (one methylated allele in greater than 50,000 
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methylated alleles) (Palmisano, Divine et al. 2000).   The two nested primers recognize 

the bisulfite-modified template but do not discriminate between the methylated and 

unmethylated alleles.  It in essence “cradles” the final sequence allowing for improved 

final amplification.  The nested primers for p16 and MGMT were reported previously by 

(Palmisano, Divine et al. 2000).  The GSTP1 nested primer was chosen by analyzing the 

area around the bisulfite-modified sequence and choosing a length twenty to twenty five 

nucleotides still within the promoter region of the gene.   

For MSP, two pairs of primers are needed, one of them specific for the bisulfite-

modified / methylated DNA (M pair) and one for the modified / unmethylated DNA (U 

pair.)  For each sample two PCR’s must be performed with each pair of primers.  

Amplification with the U pair indicates no methylation of the CpG island.  Amplification 

with the M pair and amplification with both M and U pairs indicates methylation.  Primer 

sequences for the amplification of methylated and unmethylated alleles of p16 (Herman, 

Graff et al. 1996), MGMT (Esteller, Toyota et al. 2000), and GSTP1 (Esteller, Corn et al. 

1998) were chosen based on published data.  Primer sequences for the methylated and 

unmethylated alleles of p15 were originally obtained from a published source, but 

amplification lacked specificity.  Table 2.1 lists primer names, sequences, product base 

pair size, annealing temperatures, and sources.  

MethPrimer (Li and Dahiya 2002) was used to design new primers for the p15 

amplification site (http://www.ucsf.edu/urogene/methprimer/).  MethPrimer, which is 

based on Primer3, is a program designed for the production of MSP primers.  It takes a 

DNA sequence as its input and searches the sequence for CpG islands (Li and Dahiya 
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2002).  Primers are then picked within the CpG island based on four factors (Li and 

Dahiya 2002). 

1. Primers should contain at least one CpG site at the most 3’-end.  By default 
one of the three bases at the end must be a CpG ‘C’.  This can be edited by the 
user within the program by changing the number of bases from the end that 
the CpG ‘C’ will be located. 

2. Multiple CpG sites in both primers are preferred.  

3. Primers in the M pair and U pair should contain the same CpG sites within 
their sequence.  For example if the forward M primer is ATT TAG TTT CGT 
TTA AGG TTC GA, the forward U primer must also contain the  two CpG 
sites (underlined) as in the M pair, but with the 5 methyl Cytosine replaced by 
‘T’. 

4. Two sets of primers should preferably have similar Tm values, thus allowing 
the two PCR reactions for each sample to be carried out in the same PCR 
machine under the same annealing conditions.   

 
2.6 Methylation Specific PCR Amplification 
 

The PCR reaction mixture contained .625U Taq polymerase, 1X PCR buffer, 

3.0mM MgCl2, dNTP’s (each at 1.25mM), primers (1µM final), .01% cresol red redi-

load, and bisulfite-modified DNA (50ng) in a final volume of 25µl.  0.2ml 96 well, thin 

wall reaction plates were used for each PCR.  Primer attributes are described in table 2.1.  

PCR amplification was carried out using a GeneAmp PCR System 9700 (Applied 

Biosystems).  Initial denaturation at 95C for 9 minutes is required to activate the 

thermostable Amplitaq Gold prior to amplification.   Nested amplification parameters 

were similar to the final PCR with the annealing temperature being the exception.  PCR 

reactions were carried out for 30 cycles (1 minute at 95C, 1 minute at the annealing 

temperature listed below, 1 minute at 72C), followed by a 7 minute final extension at 

72C. 
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Table 2.1  Primer Data.   
Primer set Sense primer, 5’ à  3’ Antisense primer, 5’ à 3’ Size, bp Anneal 

temp., C 
Reference 
 

p16-T GAAGAAAGAGGAG
GGGTTGG 

CTACAAACCCTCTAC
CCACC 

279 55 
 

(Palmisano, 
Divine et al. 
2000) 

p16-M TTATTAGAGGGTGG
GGCGGATCGC 

GACCCCGAACCGCGA
CCGTAA 

156 62 
 

(Herman, Graff 
et al. 1996) 

p16-U TTATTAGAGGGTGG
GGTGGATTGT 

CAACCCCAAACCACA
ACCATAA 

151 62 
 

(Herman, Graff 
et al. 1996) 

MGMT-T GGATATGTTGGGAT
AGTT 

CCAAAAACCCCAAAC
CC 

289 55 (Palmisano, 
Divine et al. 
2000) 

MGMT-U TTTGTGTTTTGATGT
TTGTAGGTTTTTGT 

AACTCCACACTCTTC
CAAAAACAAAACA 

93 62 (Esteller, Toyota 
et al. 2000) 

MGMT-
M 

TTTCGACGTTCGTA
GGTTTTCGC 

GCACTCTTCCGAAAA
CGAAACG 

81 62 
 

(Esteller, Toyota 
et al. 2000) 

GSTP1-T GGATTTTAGGGCGT
TTTTTT 

CCGAACCTTATAAAA
ATAATCCC 

154 57 
 

Wilson and 
Hutchinson 
Design 

GSTP1-U GATGTTTGGGGTGT
AGTGGTTGTT 

CCACCCCAATACTAA
ATCACAACA 

97 67 
 

(Esteller, Corn et 
al. 1998) 

GSTP1-M TTCGGGGTGTAGCG
GTCGTC 

GCCCCAATACTAAAT
CACGACG 

91 67 
 

(Esteller, Corn et 
al. 1998) 

p15-U TGTGATGTGTTTGT
ATTTTGTGGTT 

CCATACAATAACCAA
ACAACCAA 

199 62 
 

Methprimer 
Design 

p15-M GCGTTCGTATTTTG
CGGTT 

CGTACAATAACCGAA
CGACCGA  

200 62 Methprimer  
Design 

 
2.7 Agarose Gel Electrophoresis 
 
 PCR product (11.5ul) containing sucrose loading dye and .01% cresol red was 

directly loaded onto a 2% TBE agarose gel using a multipipetor.  The TBE gels contained 

0.5 µg per mL Ethidium Bromide solution for UV visualization.  The cresol red loading 

dye acts as a visual detector and adds weight to the sample so that it will sink to the 

bottom of the agarose gel wells.  Gels were run on a BioRad Sub Cell GT 2 at 150 Volts 

for 70 minutes.  The gels were then removed and placed on a BioRad Gel Doc imager 

and exposed to ultra violet light for analysis and image capture. 
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CHAPTER 3 
 

RESULTS 
 
 
 

3.1 Introduction 

 Four tumor suppressor genes that are commonly associated with inactivation by 

epigenetic instability leading to subsequent human cancer were analyzed by methylation 

specific polymerase chain reaction (MSP.)  Vulvar SCC, adjacent LS, adjacent normal 

tissue, and unassociated normal tissues from radical vulvectomies were examined to 

establish an etiological model of disease.  To determine associations between tumor 

suppressor inactivation and human vulvar cancer the following genes were studied: p16, 

p15, GSTP1, and MGMT. 

3.2  MSP Standards  

 Water blanks were included in each MSP reaction to eliminate the possibility of 

reagent contamination.  Universally unmethylated and methylated genomic DNA 

standards were also included in each to assure specificity of MSP product.  Unmethylated 

standards were those that exhibited amplification with the unmethylated (U) primer from 

the analyzed gene, therefore a band will appear at the appropriate size in the agarose gel.  

Amplification does not occur in the presence of the methylated (M) primers.  Methylated 

standards are those that exhibit amplification in the presence of the M primers and not the 

U primers. 

3.3  Samples  

 NV specimens were collected from one individual exhibiting a normal 

histological evaluation.  Samples designated CW are those from individuals with 
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histological types associated with cancer (SCC), lichen sclerosis (LS), and normal 

adjacent tissues.  The sub-grouping (last number in the sequence) is an identifier used to 

discriminate multiple tissues taken from one patient. 

3.4 Interpreting MSP Results 

Those samples that were unmethylated were confirmed if amplification occurred 

with the unmethylated (U) primer only.  Therefore, a single band of the appropriate size 

was seen in the unmethylated lane upon running the agarose gel.  Positive methylation of 

the four genes analyzed was confirmed if both primers M and U amplified the template 

DNA resulting in a band in both the unmethylated and methylated lanes.  This ‘partial 

methylation’ is observed in many tumor types (Herman, Graff et al. 1996).  Two DNA 

samples would not amplify with any of the DNA primers so they were withdrawn from 

the study.  Complete non-amplifications were most likely due to a small tissue amounts 

prior to genomic DNA isolation.  Representative samples that tested positive for 

methylation were analyzed a second time to ensure reproducibility. 

Those samples that amplified in one or more genes, but would not amplify in all 

four were analyzed two times to insure that template was incorporated into the MSP 

reaction.  This lack of amplification could be due to many factors.  One is that both 

alleles in the DNA of the withdrawn sample could have been permanently deleted.  The 

other explanation is that degradation could have occurred in the sample that inhibited 

amplification of the template.  SCC samples exhibited this phenomenon most prevalently, 

which tends to point to the first explanation.  Although interesting further study using 

different methods would be required to justify allelic deletion.   
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3.5  Statistical Analysis 

 A contingency table shows numerically the results of an experiment in which the 

outcome is a categorical variable. Commonly, two groups of subjects are studied and 

there are two possible outcomes.  In this case the groups analyzed were SCC vs. normal 

and SCC vs. LS, with possible outcomes being methylated and unmethylated.  2x2 

contingency tables such as this, are best analyzed by a procedure very commonly called 

the Fisher exact test (Zar 1999).  A p value which is equal to or less than 0.05 is 

considered to demonstrate a statistically significant difference between sets of samples.   

3.6  p16 Gene 
 

MSP amplification of the p16 gene was achieved by nested PCR.  The outside 

PCR yielded a product that was 279 base pair.  p16 methylated primers and p16 

unmethylated primers produced products that were of 156 base pair and 151 base pair in 

length, respectively.    

MSP analysis of the 157 samples analyzed for p16 revealed methylation in thirty 

one samples.  Methylation was found in nineteen of seventy three (26%) cases of vulvar 

SCC.  Lichen sclerosis also seemed informative in p16 yielding methylation in twelve of 

fifty five (22%) cases.  None of the eighteen normal adjacent tissues or the nine normal 

unassociated tissues revealed methylation.   

The methylation of SCC specimens using the p16 primer was found to be 

significantly higher than normal tissues (p=0.0013).  The occurrence of methylation in 

adjacent lichen sclerosis tissues were also found to be significantly different from normal 

tissues (p=0.0085).  This relationship showing increased methylation from normal to LS 
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suggests that epigenetic silencing of p16 is an early event in vulval neoplasia.  

Representative examples of p16 MSP are illustrated in figure 3.1. 

 
Figure 3.1 Representative samples of MSP analysis of the p16 gene. 

Five cases (patient specimens CW40, CW41, CW44, CW49, and CW70) were 

analyzed for progression of normal vulva to LS, and finally to SCC.  In case 40 there was 

no progression of methylation from normal to SCC.  Cases CW41, CW44, and CW70 

exhibited methylation in SCC, but no methylation in normal or LS samples.  Patient 

CW49 showed no methylation in normal tissues, but methylation in both LS and SCC 

samples.  Several of these samples were run numerous times for validation.  Table 3.1 

illustrates the results of these analyses for the five complete cases. 

Table 3.1  Progression from normal to SCC for p16 
Specimen Identifier p16 Status 
CW 40-4 N - 
CW 40-5 LS - 
CW 40-1 SCC - 
CW 40-2 SCC - 
CW 41-2 N - 
CW 41-4 LS - 
CW 41-1 SCC + 
CW 44-1 N - 
CW 44-3 LS - 
CW 44-4 LS - 
CW 44-6 LS - 
CW 44-2 SCC + 
CW 49-7 N - 
CW 49-4 LS + 
CW 49-5 LS + 
CW 49-6 LS + 
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(Table 3.1  Continued)   
Specimen Identifier p16 Status 
CW 49-1 SCC + 
CW 49-3 SCC + 
CW 70-7 N - 
CW 70-1 LS - 
CW 70-4 LS - 
CW 70-5 LS - 
CW 70-6 LS - 
CW 70-3 SCC + 
CW 70-2 SCC + 
+  Methylated 
–  Unmethylated 
 
3.7  p15 Gene 
 

Amplification of the p15 promoter region was accomplished using a non-nested 

MSP reaction.  The bioinformatics software MethPrimer was used to design appropriate 

primers that would provide consistent amplification.  The unmethylated and methylated 

p15 amplification products were 199 and 200 base pair respectively.   

MSP analysis of the p15 gene revealed thirty nine cases of methylation out of a 

total one hundred thirty nine samples analyzed.  Of the SCC samples analyzed, twenty 

two of the sixty four (34%) exhibited methylation.   In LS samples fifteen of forty eight 

(31%) were positive for methylation.  Two of the twenty five (8%) normal samples were 

methylated.  Of the normal tissues exhibiting methylation all ten unassociated normal 

samples were unmethylated. Representative results are shown in Figure 3.2. 

p15 methylation of SCC carcinoma tissues was significantly different than normal 

tissues (p=0.0085).  The associated LS tissue was also found to be significantly different 

than that of normal tissues (p=0.0217).  As with p16 the methylation trend from SCC to 

LS suggests and early silencing event of the p15 marker in vulval neoplasia.  It is 

noteworthy that the methylation in the normal samples was observed in the cancer 

associated normal tissues only.   
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Figure 3.2 Representative samples of MSP analysis of the p15 gene. 

Four cases that contained all three histological types were analyzed for p15 

promoter methylation.  None of the specimens analyzed for the patients CW30, CW44, 

CW49, or CW70 displayed of methylation in the adjacent normal tissues.  Interestingly, 

patient CW 49 SCC tissue did not harbor a methylated p15 gene, but did display 

methylation in one of two LS specimens.  The methylation data for these four samples is 

reported in table 3.3. 

Table 3.2  Progression from normal to SCC for p15 
Specimen Identifier p15 Status 
CW 30-2 N - 
CW 30-3 LS - 
CW 30-4 LS - 
CW 30-5 LS - 
CW 30-1 SCC - 
CW 44-1 N - 
CW 44-6 LS - 
CW 44-3 LS + 
CW 44-4 LS + 
CW 44-2 SCC + 
CW 49-7 N - 
CW 49-4 LS - 
CW 49-5 LS + 
CW 49-1 SCC - 
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Table 3.2  (Continued)   
Specimen Identifier p15 Status 
CW 49-3 SCC - 
CW 70-7 N - 
CW 70-1 LS - 
CW 70-5 LS - 
CW 70-6 LS - 
CW 70-3 SCC + 
CW 70-2 SCC + 
 
+  Methylated 
–  Unmethylated 
 
3.8  GSTP1 Gene 
 

Amplification of the GSTP1 promoter sequence was accomplished using the 

nested MSP approach.  The outside primers resulted in a 154 base pair DNA fragment, 

while the U primer and M primer yielded a 97 and 91 base pair fragment.   

Sample analysis of the GSTP1 promoter following MSP revealed a total of fourteen 

methylated samples of a total one hundred forty four analyzed.  Four (6%) of the sixty 

nine samples tested for SCC yielded methylation. Samples with LS histology were found 

methylated in seven of forty eight total cases (15%).  Two (7%) of the twenty eight total 

normal samples analyzed were methylated.  The ten normal associated samples that were 

analyzed contained no methylation. 

SCC tissue at the GSTP1 promoter were not found to be statistically significant 

from the normal tissue samples analyzed (p=1.0000).  When LS tissues were compared to 

the normal tissues again no significant difference in the two were found (p=0.4717).  

Furthermore, when excluding the normal adjacent tissues from the analysis the same 

trend was observed.  There was no statistically significant difference observed between 

the SCC and normal unassociated groups (p=1.0000) or the LS and normal unassociated 

groups (p=0.0591).  GSTP1 proves to be a poor indicator of cancer due to low 
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methylation in cancer cells.  Representative examples of the analysis of methylation from 

the three tissue types are illustrated in figure 3.3. 

 

 
 
Figure 3.3 Representative samples of MSP analysis of the GSTP1 gene. 

 No apparent trend in progression from normal to SCC tissues was observed in 

four of the specimens that were examined that had all three histological types.  The 

methylation data for these four samples is reported in Table 3.4.  

Table 3.3  Progression from normal to SCC for GSTP1 
Specimen Identifier GSTP1 Status 
CW 41-2 N - 
CW 41-4 LS - 
CW 41-1 SCC - 
CW 44-1 N - 
CW 44-6 LS - 
CW 44-3 LS - 
CW 44-4 LS - 
CW 44-2 SCC - 
CW 49-7 N - 
CW 49-5 LS + 
CW 49-1 SCC - 
CW 49-3 SCC - 
CW 70-7 N + 
CW 70-1 LS - 
CW 70-5 LS - 
CW 70-6 LS + 
CW 70-3 SCC - 
CW 70-2 SCC - 
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 MGMT Gene 
 

Identical nested PCR to that of the John’s Hopkins group led by James G. Herman 

(Palmisano, Divine et al. 2000) was employed in the study that resulted in a 289 base pair 

outside fragment and a 93 and 81 unmethylated and methylated fragment.  SCC exhibited 

the highest methylation with half of the seventy samples that were analyzed displaying 

methylation.  LS tissues were similar with twenty three of the forty nine aberrantly 

methylated (47%).  Of the twenty seven normal tissues analyzed twelve were methylated 

(44%).  Of the normal unassociated tissues (normal associated) in this study five of the 

ten were methylated (50%)  This corroborates with studies from other labs that indicate a 

high degree of methylation in normal tissues (Eads, Lord et al. 2001).  The data for 

MGMT failed to reveal any significant difference in the methylation status between 

histological types.  Representative examples of the analysis of methylation from the three 

tissue types are illustrated in figure 3.4. 

 
 

Figure 3.4 Representative samples of MSP analysis of the MGMT gene. 

Four cases were analyzed that displayed all three histological types, as presented 

in Table 3.4.  With the MGMT gene no correlation could be seen from normal tissue to 

progression of SCC.   
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Table 3.4  Progression from normal to SCC for MGMT 
Specimen Identifier MGMT Status 
CW 41-2 N - 
CW 41-4 LS - 
CW 41-1 SCC + 
CW 44-1 N + 
CW 44-6 LS + 
CW 44-3 LS + 
CW 44-4 LS + 
CW 44-2 SCC - 
CW 49-7 N - 
CW 49-5 LS + 
CW 49-1 SCC - 
CW 49-3 SCC - 
CW 70-7 N - 
CW 70-1 LS - 
CW 70-5 LS + 
CW 70-6 LS + 
CW 70-3 SCC - 
CW 70-2 SCC + 
 
3.10 Overall Results 
 

It was found that p16 and p15 were promising in detecting aberrant methylation in 

both SCC and LS samples.  Of the two p16 was most advantageous exhibiting a 

significant difference in methylation between SCC and normal tissues (normal adjacent 

and unassociated normal) (p=0.0014).  A significant difference in methylation between 

LS and normal tissues were also observed (p=0.0075).  p15 was also informative 

displaying a significant difference in SCC and normal tissues (p=0.0045) and LS and 

normal tissues (p=0.0028). 

No significant difference was found in the methylation status of either GSTP1 or 

MGMT genes.  GSTP1 was found to have a low occurrence of methylation in all tissues.  

MGMT was unusual in that the overall methylation was unexpectedly high in all tissues 

tested.  The results of all methylation tests conducted in this study are listed below in 

table 3.5.   
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Table 3.5  Results from methylation analysis from all tissues examined. 
Specimen Identifier p16 p15 MGMT GSTP1 

NV-1A N - - - - 
NV-1B N  ND - - - 
NV-2C N - - - - 
NV-3A N - - - - 
NV-3B N - - + - 
NV-3C N - - + - 
NV-4A N - - + - 
NV-4B N - - + - 
NV-4C N - - + - 
NV-5 N - - - - 
CW A-1 SCC  ND  ND ND  - 
CW C-1 SCC -  ND -  ND 
CW 1-1 SCC  ND  ND  ND - 
CW 2-2 LS -  ND  ND - 
CW 2-3 SCC +  ND  ND - 
CW 5-1 SCC -  ND  ND - 
CW 6-5 LS  ND -  ND ND  
CW 7-1 SCC -  ND ND  ND  
CW 10-1 SCC - ND  -  ND 
CW 11-1 SCC - - - - 
CW 12-1 SCC  ND - -  ND 
CW 12-2 SCC - + - - 
CW 12-4 SCC - - - - 
CW 13-4 N - - + + 
CW 13-5 N - ND  ND  ND  
CW 14-1 SCC - - + - 
CW 14-2 SCC - - + - 
CW 15-1 SCC + + + - 
CW 15-2 SCC - + + - 
CW 15-3 LS - - - - 
CW 16-3 N - - + - 
CW 17-1 SCC - - - + 
CW 17-2 LS - - - + 
CW 17-4  LS - - - - 
CW 17-6 LS - - - - 
CW 18-1 SCC - + - - 
CW 18-2 SCC -  ND ND  - 
CW 18-3  SCC + - - - 
CW 18-4 SCC -  ND - ND  
CW 18-6 SCC + ND  -  ND 
CW 19-1 SCC - - - - 
CW 19-2 SCC +  ND - ND  
CW 21-1 SCC - + - - 
CW 21-2 LS - - - - 
CW 21-3  LS - + + - 
CW 21-4 LS - + - - 
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(Table 3.5  Continued)      
Specimen Identifier p16 p15 MGMT GSTP1 

CW 22-3 LS -  ND  ND  ND 
CW 22-4 LS + + + - 
CW 23-3 N - - - - 
CW 25-1 SCC + - - - 
CW 25-3 LS - - - - 
CW 27-2 SCC - - ND  - 
CW 28-1 SCC - + + - 
CW 28-5 LS -  ND  ND ND  
CW 29-2 SCC +  ND    ND  - 
CW 29-4 LS - -  ND - 
CW 29-5 LS  ND -  ND ND  
CW 29-6 SCC + + + - 
CW 29-7 LS - - - ND  
CW 30-1 SCC  ND -  ND ND  
CW 30-2 N - - - - 
CW 30-3 LS - - + - 
CW 30-4 LS - - + - 
CW 30-5 LS - - - - 
CW 31-3 LS - - - - 
CW 32-1 SCC - - + + 
CW 34-1 LS -  ND - - 
CW 34-2 SCC - - - + 
CW 34-3 LS - - + + 
CW 35-1  LS -  ND - - 
CW 35-2  LS - - + - 
CW 35-3 SCC - + + - 
CW 35-5 LS - + + - 
CW 35-6 LS + - - - 
CW 35-7 LS - - - + 
CW 39-2 SCC - - + ND  
CW 40-1 SCC - - - - 
CW 40-2 SCC - - - - 
CW 40-4 N - - + - 
CW 40-5 LS -  ND   ND  
CW 41-1 SCC + - + - 
CW 41-2 N - - - - 
CW 41-4 LS -  ND - - 
CW 43-1 SCC + ND  - - 
CW 43-4 SCC + + - - 
CW 44-1 N - - + - 
CW 44-2 SCC + + - - 
CW 44-3 LS - + + - 
CW 44-4 LS - + + - 
CW 44-6 LS - - + - 
CW 45-4 N - + - - 
CW 45-5 LS - + - - 
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(Table 3.5  Continued)      
Specimen Identifier p16 p15 MGMT GSTP1 

CW 46-3 LS + - + - 
CW 46-4 LS + - - - 
CW 46-6 LS - - - - 
CW 47-2 SCC + - + - 
CW 47-3 LS + - + - 
CW 47-4 LS - - - - 
CW 49-1 SCC + - - - 
CW 49-3 SCC + - - - 
CW 49-4 LS + - ND  ND  
CW 49-5 LS + + + + 
CW 49-6 LS + ND  ND  ND  
CW 49-7 N - - - - 
CW 50-1 SCC ND  ND  +  ND 
CW 50-2 SCC - - - - 
CW 50-4 SCC + + - - 
CW 50-5 LS + + + - 
CW 50-6 SCC - - + - 
CW 50-7 SCC - + + - 
CW 52-1 LS + + + - 
CW 52-2 N - - - - 
CW 52-4 LS - - + - 
CW 52-6 LS + + - - 
CW 53-1 LS - + + - 
CW 53-2 LS + + - - 
CW 57-1 SCC - + + - 
CW 57-3 N - - + - 
CW 60-1 N - - - - 
CW 61-2 LS - - + - 
CW 61-4 LS ND  ND  - ND  
CW 61-6 SCC - + + - 
CW 62-1 N - - - - 
CW 63-1 SCC - - + - 
CW 63-2 SCC - - - - 
CW 63-5 SCC - - + - 
CW 64-3 SCC - - + - 
CW 66-3 LS - + - + 
CW 66-4 LS - - + ND  
CW 67-2 N -  ND ND  ND  
CW 70-1 LS - - - - 
CW 70-2 SCC + + + - 
CW 70-3 SCC + + - - 
CW 70-4 LS -  ND - - 
CW 70-5 LS - - + - 
CW 70-6 LS - - + + 
CW 70-7 N - - - + 
CW 72-1 SCC - - + - 
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(Table 3.5  Continued)      
Specimen Identifier p16 p15 MGMT GSTP1 

CW 73-1 N - + - - 
CW 73-4 N - ND  ND  ND  
CW 78-1 SCC - - + - 
CW 78-2 SCC - - + - 
CW 78-3 SCC - + + - 
CW 78-4 SCC - + + - 
CW 78-5 SCC - + - - 
CW 79-1 SCC - - + - 
CW 79-2 SCC - - + - 
CW 79-3 N - - + - 
CW 80-2 SCC - - - - 
CW 89-1 SCC - - - - 
CW 89-2 SCC - - - - 
CW 89-3 LS - - - - 
CW 91-1 SCC - + - - 
CW 91-2 SCC - ND  - - 
CW 91-5 LS - + + - 
CW 93-1 SCC - + + - 
CW 93-2 SCC - - - - 
CW 96-1 SCC - - + - 
CW 96-2 SCC - - + - 
CW 97-1 SCC - + + - 
CW 97-5 SCC  ND ND  ND  - 
CW 98-1 SCC + - + + 
CW 108-1 N - - + - 
CW 108-2 LS - - + + 
CW 109-1 SCC ND  - - ND  
CW 109-2 SCC - - + - 
CW 110-1 SCC - - + - 
CW 110-3 SCC - - + - 

Samples designated + were found to be methylated.   
Samples designated – were found to be unmethylated. 
Samples designated ND were not determined. 
 
  This study found significant differences in the methylation patterns of the 

two genes analyzed.  The statistically significant differences of p16 and p15 were 

observed between SCC and normal samples as well as between LS and normal samples.  

These statistically significant relationships of increased methylation among tissues are 

very powerful.  The data suggest that that epigenetic silencing of p16 and p15 is an early 
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event in vulvar neoplasia.  Tables 3.6, 3.7, and 3.8 summarize the significant differences 

between the various histological types. 

Table 3.6  Statistical comparison of SCC and total normal samples 
Gene SCC Normal P Value P<0.05 
p16 26.0 % 0 % 0.0013 Yes 
p15 34.4 % 7.4 % 0.0085 Yes 
GSTP1 5.8 % 7.1 % 1.0000 No 
MGMT 50.0 % 44.4 % 0.6567 No 
 
Table 3.7  Statistical comparison of LS and total normal samples 
Gene LS Normal P Value P<0.05 
p16 21.8 % 0 % 0.0065 Yes 
p15 31.3 % 7.4 % 0.0217 Yes 
GSTP1 14.6 % 7.1 % 0.4717 No 
MGMT 46.9 % 44.4 % 1.0000 No 
 
Table 3.8  Statistical comparison of SCC and LS samples 
Gene SCC LS P Value P<0.05 
p16 26.0 % 21.8 % 0.6785 No 
p15 34.4 % 31.3 % 0.8397 No 
GSTP1 5.8 % 14.6 % 0.1221 No 
MGMT 50.0 % 46.9 % 0.8525 No 
 
Table 3.9 Statistical comparison of SCC and unassociated normal samples for those 
samples with methylated adjacent normal samples 
Gene SCC Normal P Value P<0.05 
p16 26.0% 0 % 0.1084 No 
p15 34.4 % 0 % 0.0279 Yes 
GSTP1 5.8 % 0 % 1.0000 No 
MGMT 50.0 % 50 % 1.0000 No 
 
 Samples were compared among the four genes that were tested.  Two of the 

possible sixty one SCC sample displayed methylation in three genes (3.3%).  Nineteen 

SCC samples had methylation in two or three genes (27.5%), and fifty two of the SCC 

samples had methylation in one or more genes (68.4%). 

One LS sample (CW 49-5) was found that displayed aberrant methylation in all 

four genes.  Four samples presented methylation in three genes or more out of a total 
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forty nine for 7.1%.  Fourteen of the LS samples had methylation in two or more genes 

(35.4%) and thirty three had methylation in one or more samples (56.9%).   

When combining SCC and LS tissues five were methylated in three genes (4.4%), 

thirty six were methylated in two genes or more (28.6%), and eighty five had methylation 

in one or more genes (61.6%).  This data is summarized in Figure 3.5 which depicts 

methylation analysis of histological type and the number of genes methylated per 

specimen.  
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Figure 3.5 Methylation by histological type using all genes. 

Finally for normal adjacent samples, one sample exhibited methylation in 3 genes 

out of a total thirty samples (3.3%), and fifteen samples were methylated in one and two 

genes (50.0%).   
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CHAPTER 4 
 

DISCUSSION AND CONCLUSION 
 
 
 
4.1 General Discussion 
 

By studying the molecular change in methylation patterns associated with 

transitions from normal to lichen sclerosis and finally to squamous cell carcinoma in 

human vulva an etiological model of disease was formed.  Four genes were chosen that 

are commonly inactivated in human neoplasia; p16, p15, and Glutathione S-Transferase 

P1 (GSTP1) and O6-methylguanine-DNA Methyltransferase (MGMT).  The two genes 

that appear to be most promising for early prognosis of vulval squamous cell carcinoma 

are p16 and p15.  Overall, the methylation results observed in the present study were not 

abnormal from those seen in other studies. 

4.2 p16 and p15 Genes 

The p16 and p15 genes are both cyclin dependent kinase inhibitors (CDKs) which 

regulate cell division.  Hypermethylation of CpG islands in the tumor suppressor gene 

p16 occurs frequently in various types of human malignancies (Xing, Nie et al. 1999; 

Kim, Nelson et al. 2001; Gasco, Sullivan et al. 2002; Kresty, Mallery et al. 2002; Holst, 

Nuovo et al. 2003).  Inactivation of the p16 gene has been observed in esophageal 

squamous cell carcinoma (Xing, Nie et al. 1999), vulvar squamous cell carcinoma 

(Gasco, Sullivan et al. 2002), and others.  The frequency of p16 mutations in primary 

tumors also vary among reports from 0-50%, and differed significantly between different 

ethnic groups if not due to experimental variation (Xing, Nie et al. 1999).  Coincident 

inactivation of p16 in vulvar SCC was found previously at an occurrence of 60% in 36 
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cases (Gasco, Sullivan et al. 2002).  p15 is highly homologous to p16, particularly in 

exon 2, where they share 91% sequence identity (Hannon and Beach 1994), indicating 

their origination by a gene duplication event (Xing, Nie et al. 1999).  The p15 gene is also 

commonly hypermethylated in human neoplasms (Yeh, Chang et al. 2003), however, 

hypermethylation in both p16 and p15 is uncommon (Issa 2004).   

This study demonstrated p16 and p15 were found to exhibit a high frequency of 

promoter methylation in vulvar SCC.   As a percentage of SCC tissues analyzed 

methylation was found p16 and p15 at 26% and 34%, respectively.  Lichen sclerosis (LS) 

tissues were also informative yielding 22% methylation in p16 and 31% in p15.  These 

values for SCC and LS tissues were both found to be statistically different from normal 

tissues analyzed.  This relationship showing increasing methylation from normal to LS 

and SCC suggests that epigenetic silencing of p16 is an early event in vulvar neoplasia.  

Both p16 and p15 data present a clear picture with exceptionally low methylation patterns 

in normal tissues.  These data correlate well with data from others studying SCC and 

other cancers.  p15 exhibited methylation in the cancer associated normal tissues only.  

This could be an indicator that the associated normal tissues for this marker are 

undergoing methylation leading to cell cycle disruption early.  Another explanation is 

that there is a cancer field effect present in neighboring tissues.   

4.3  GSTP1 Gene 

GSTP1 is a member of the GST superfamily of four genes that provide important 

defense against oxidative damage to DNA and other cellular macromolecules (Gilliland, 

Harms et al. 2002).  GSTP1 is a vital gene that plays an important role in protecting cells 

from cytotoxic and carcinogenic agents (Zhong, Tang et al. 2002).  Published data has 
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demonstrated that GSTP1 methylation correlates highly with many primary tumors 

including: prostate carcinoma (83%) breast cancer (31%), renal cancer (20%), lung 

cancer (9%), colon cancer (4%), and others (Esteller, Corn et al. 1998).  Primary tumors 

reported by Esteller, et al. 1998 not exhibiting significant methylation include 

endometrial carcinoma, melanoma, head and neck carcinoma, and others. Hepatocellular 

Carcinomas exhibited a background level in normal tissues of four out of a total forty 

samples (10%) (Zhong, Tang et al. 2002).   

GSTP1 was not found to have a statistically significant difference between SCC, 

LS, or normal tissues in this study.  A high methylation rate was found in normal tissues 

adjacent to SCC and LS tissues.  Although this was not statistically significant from SCC 

and LS it still raised concern.  Further, other groups found similar trends of high GSTP1 

methylation in normal tissues.  Zhong, Tang et al. 2002 found 10% of hepatocellular 

carcinomas methylated in normal tissues.  Since none of the ten unassociated tissues were 

found to be methylated, the methylation in the normal adjacent tissues may be due to the 

proximal association with SCC or possibly a cancer field effect (Dong, Ip et al. 2002). 

4.4 MGMT Gene  

An association between the DNA repair gene MGMT and cancer has been 

recognized in brain, colon lymphoma, and non-small cell lung cancer (Esteller, Toyota et 

al. 2000).  Loss of MGMT is associated with increased risk of carcinogenesis and 

increased sensitivity to methylating agents (Gerson 2004).   

In this study the DNA repair gene MGMT had very high methylation status in all 

three histological cell types, all very near 50%.  There was no statistically significant 

difference in any of the three histological types.  Ranges in methylation of published data 
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have been broad, from 2% in bladder cancer (Maruyama, Toyooka et al. 2001) to 60% in 

esophageal carcinoma (Eads, Lord et al. 2001).  A high level background in normal 

tissues has been observed.  The studies of esophageal carcinoma at The University of 

Southern California, Keck School of Medicine, Norris Comprehensive Cancer Center, 

Los Angeles California included normal stomach tissue (NE) samples that exhibited a 

high propensity for methylation (Eads, Lord et al. 2001).  The Los Angeles group found 

thirty one of fifty one normal samples (60%) that displayed methylation.  The group 

statistically analyzed the data using Fisher’s Exact Test to compare the esophageal 

carcinoma tissues to normal stomach tissues and found that there was no significant 

difference (no p value reported.)  Other groups have found a high incidence of 

methylation in normal tissues.  The James G. Herman (the architect of MSP) lab group 

from John’s Hopkins Comprehensive Cancer Center, Baltimore Maryland found similar 

results when studying aberrant methylation in sputum of lung cancer patients.  The group 

originally studied ten cases of matched SCC and sputum normal tissues.   Of these, three 

cases of the normal sputum were methylated (Palmisano, Divine et al. 2000). 

Among samples that displayed methylation in SCC there were no cases that 

displayed methylation in all four genes.  Two samples displayed methylation in three 

genes (3.3%) and the trend increased to sixty eight percent exhibiting methylation in at 

least one gene.  LS tissues displayed a somewhat similar trend with one sample 

displaying methylation in all four genes and three exhibiting methylation in three genes.  

As with SCC the methylation trend increased as the number of genes methylated 

decreased.  Fifty seven percent of LS samples had at least one gene methylated.  Normal 

samples exhibiting methylation in three or more genes was found in one sample.  Fifteen 
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normal samples were methylated in one and two genes increasing the total percentage of 

normal methylation to fifty percent.  If excluding the MGMT gene this number the 

number of normal genes methylated drops dramatically to approximately thirty percent.  

The methylation of the panel of genes selected indicates an apparent trend among cases 

from SCC to LS to normal tissues. 

4.5 Conclusion 

In recent years cancer has begun to be understood not only as a genetic disease, 

but also as an epigenetic one (Baylin and Herman 2000).  It appears that these pathways 

are interrelated by a complex network involving many distinct processes.  Changes in 

DNA methylation along with chromatin modifications are at the heart of epigenetic 

changes.  DNA methylation patterns are tremendously altered in neoplasia and are often 

comprised of genomic level loss of methylation and both gains and losses of regional 

methylation.  In particular aberrant promoter hypermethylation is associated with 

inappropriate gene silencing at every step in tumor progression (Jones and Baylin 2002).  

Aberrant DNA methylation of promoter sequences of genes has been associated with 

numerous types of human cancers including squamous cell carcinoma.  Understanding 

the evolution of abnormal methylation patterns could provide an insight into human 

cancer development.  This insight could lead to early diagnosis and provide us with 

possible targets for molecular gene therapy.  One such approach is treatment with 5-aza-

cytidine to prevent hypermethylation of tumor suppressor genes.  Furthermore, increased 

understanding may lead to other pharmaceutical interventions that could be more 

effective and less invasive than those currently employed.   
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Valuable data was obtained that contributes to the range of information being 

collected on: aberrant DNA methylation, gene silencing, and for the progression of vulvar 

disease from normal to LS to SCC.  Further studies of these genes and their functions 

would contribute to these data.  Other tumor suppressors and proto-oncogenes should be 

studied to increase the overall knowledge of silenced genes associated with vulvar 

cancer.  Primarily proteins that the four genes encode should be studied.  It is known that 

post transcriptional events are also important in cell function.   The protein expression of 

the normal genes and expressed mutant genes could be monitored by the use of 

antibodies specific.  Protein data would strengthen the results to an even greater degree 

and would give unarguable conclusion to the fates of these genes.   

 
 



www.manaraa.com

 52 

REFERENCES 
 
 
 

Adams, D. S. (2003). Lab Math: A Handbook of Measurements, Calculations, and Other 
Quantitative Skills for Use at the Bench. Woodbury, New York, Cold Spring 
Harbor Laboratory Press. 

Anderson, G. R. (2001). "Genomic Instability in Cancer." Current Science 81(5): 501-
507. 

Bakker, J., X. Lin, et al. (2002). "Methyl-CpG binding domain protein 2 represses 
transcription from hypermethylated pi-class glutathione S-transferase gene 
promoters in hepatocellular carcinoma cells." J Biol Chem 277(25): 22573-80. 

Balint, E. E. and K. H. Vousden (2001). "Activation and activities of the p53 tumour 
suppressor protein." Br J Cancer 85(12): 1813-23. 

Baylin, S. B. and J. G. Herman (2000). "DNA hypermethylation in tumorigenesis: 
epigenetics joins genetics." Trends Genet 16(4): 168-74. 

Baylin, S. B., J. G. Herman, et al. (1998). "Alterations in DNA methylation: a 
fundamental aspect of neoplasia." Adv Cancer Res 72: 141-96. 

Brinton, L. A., P. C. Nasca, et al. (1990). "Case-control study of cancer of the vulva." 
Obstet Gynecol 75(5): 859-66. 

Canavan, T. P. and D. Cohen (2002). "Vulvar cancer." Am Fam Physician 66(7): 1269-
74. 

Carlson, A. and P. Edenhamn (2000). "Extinction dynamics and the regional persistence 
of a tree frog metapopulation." Proc R Soc Lond B Biol Sci 267(1450): 1311-3. 

Carlson, J. A., R. Ambros, et al. (1998). "Vulvar lichen sclerosus and squamous cell 
carcinoma: a cohort, case control, and investigational study with historical 
perspective; implications for chronic inflammation and sclerosis in the 
development of neoplasia." Hum Pathol 29(9): 932-48. 

Carlson, J. A., P. Lamb, et al. (1998). "Clinicopathologic comparison of vulvar and 
extragenital lichen sclerosus: histologic variants, evolving lesions, and etiology of 
141 cases." Mod Pathol 11(9): 844-54. 

Chen, R. Z., U. Pettersson, et al. (1998). "DNA hypomethylation leads to elevated 
mutation rates." Nature 395(6697): 89-93. 

Cleaver, J. E. (1984). Defective DNA Repair and Cancer-Prone Disorders of Man. UCLA 
Symposia on Molecular and Cellular Biology, Steamboat Springs Colorado, Alan 
R. Liss, Inc. 



www.manaraa.com

 53 

Crum, C. P. (1992). "Carcinoma of the vulva: epidemiology and pathogenesis." Obstet 
Gynecol 79(3): 448-54. 

Cui, H., P. Onyango, et al. (2002). "Loss of imprinting in colorectal cancer linked to 
hypomethylation of H19 and IGF2." Cancer Res 62(22): 6442-6. 

Derrick, E. K., C. M. Ridley, et al. (2000). "A clinical study of 23 cases of female 
anogenital carcinoma." Br J Dermatol 143(6): 1217-23. 

Dong, Y., C. Ip, et al. (2002). "Evidence of a field effect associated with mammary 
cancer chemoprevention by methylseleninic acid." Anticancer Res 22(1A): 27-32. 

Dunn, B. K. (2003). "Hypomethylation: one side of a larger picture." Ann N Y Acad Sci 
983: 28-42. 

Dunn, B. K., M. Verma, et al. (2003). "Epigenetics in cancer prevention: early detection 
and risk assessment: introduction." Ann N Y Acad Sci 983: 1-4. 

Eads, C. A., R. V. Lord, et al. (2001). "Epigenetic patterns in the progression of 
esophageal adenocarcinoma." Cancer Res 61(8): 3410-8. 

Eaton, D. L. and C. D. Klaassen (2001). Principles of Toxicology. Casarett and Doull's 
Toxicology: The Basic Science of Poisons. C. D. Klaassen. New York, McGraw-
Hill: 11-34. 

Esteller, M., P. G. Corn, et al. (2001). "A gene hypermethylation profile of human 
cancer." Cancer Res 61(8): 3225-9. 

Esteller, M., P. G. Corn, et al. (1998). "Inactivation of glutathione S-transferase P1 gene 
by promoter hypermethylation in human neoplasia." Cancer Res 58(20): 4515-8. 

Esteller, M. and J. G. Herman (2002). "Cancer as an epigenetic disease: DNA 
methylation and chromatin alterations in human tumours." J Pathol 196(1): 1-7. 

Esteller, M., M. Toyota, et al. (2000). "Inactivation of the DNA repair gene O6-
methylguanine-DNA methyltransferase by promoter hypermethylation is 
associated with G to A mutations in K-ras in colorectal tumorigenesis." Cancer 
Res 60(9): 2368-71. 

Feinberg, A. P. and B. Tycko (2004). "The history of cancer epigenetics." Nat Rev 
Cancer 4(2): 143-53. 

Gasco, M., A. Sullivan, et al. (2002). "Coincident inactivation of 14-3-3sigma and 
p16INK4a is an early event in vulval squamous neoplasia." Oncogene 21(12): 
1876-81. 

Gerson, S. L. (2004). "MGMT: its role in cancer aetiology and cancer therapeutics." Nat 
Rev Cancer 4(4): 296-307. 



www.manaraa.com

 54 

Gilliland, F. D., H. J. Harms, et al. (2002). "Glutathione S-transferase P1 and NADPH 
quinone oxidoreductase polymorphisms are associated with aberrant promoter 
methylation of P16(INK4a) and O(6)-methylguanine-DNA methyltransferase in 
sputum." Cancer Res 62(8): 2248-52. 

Gregus, Z. and C. D. Klaasen (2001). Mechanisms of Toxicity. Casarett and Doull's 
Toxicology: The Basic Science of Poisons. C. D. Klaassen. New York, McGraw-
Hill: 35-81. 

Hanahan, D. and R. A. Weinberg (2000). "The hallmarks of cancer." Cell 100(1): 57-70. 

Hannon, G. J. and D. Beach (1994). "p15INK4B is a potential effector of TGF-beta-
induced cell cycle arrest." Nature 371(6494): 257-61. 

Hartwell, L. H. and M. B. Kastan (1994). "Cell cycle control and cancer." Science 
266(5192): 1821-8. 

Herbert, V. (1986). "The role of vitamin B12 and folate in carcinogenesis." Adv Exp Med 
Biol 206: 293-311. 

Herman, J. G., J. R. Graff, et al. (1996). "Methylation-specific PCR: a novel PCR assay 
for methylation status of CpG islands." Proc Natl Acad Sci U S A 93(18): 9821-6. 

Holst, C. R., G. J. Nuovo, et al. (2003). "Methylation of p16(INK4a) promoters occurs in 
vivo in histologically normal human mammary epithelia." Cancer Res 63(7): 
1596-601. 

Issa, J.-P. (2004). DNA Methylation in Cancer, The University of Texas M.D. Anderson 
Cancer Center. 2004. 

Jain, P. K. (2003). "Epigenetics: the role of methylation in the mechanism of action of 
tumor suppressor genes." Ann N Y Acad Sci 983: 71-83. 

Jenuwein, T. and C. D. Allis (2001). "Translating the histone code." Science 293(5532): 
1074-80. 

Jones, P. A. and S. B. Baylin (2002). "The fundamental role of epigenetic events in 
cancer." Nat Rev Genet 3(6): 415-28. 

Jones, P. A. and P. W. Laird (1999). "Cancer epigenetics comes of age." Nat Genet 21(2): 
163-7. 

Kim, D. H., H. H. Nelson, et al. (2001). "p16(INK4a) and histology-specific methylation 
of CpG islands by exposure to tobacco smoke in non-small cell lung cancer." 
Cancer Res 61(8): 3419-24. 

Kondo, Y., L. Shen, et al. (2003). "Critical role of histone methylation in tumor 
suppressor gene silencing in colorectal cancer." Mol Cell Biol 23(1): 206-15. 



www.manaraa.com

 55 

Kresty, L. A., S. R. Mallery, et al. (2002). "Alterations of p16(INK4a) and p14(ARF) in 
patients with severe oral epithelial dysplasia." Cancer Res 62(18): 5295-300. 

Laird, P. W. (1997). "Oncogenic mechanisms mediated by DNA methylation." Mol Med 
Today 3(5): 223-9. 

Lerma, E., M. Esteller, et al. (2002). "Alterations of the p16/Rb/cyclin-D1 pathway in 
vulvar carcinoma, vulvar intraepithelial neoplasia, and lichen sclerosus." Hum 
Pathol 33(11): 1120-5. 

Li, L. C. and R. Dahiya (2002). "MethPrimer: designing primers for methylation PCRs." 
Bioinformatics 18(11): 1427-31. 

Li, S., S. D. Hursting, et al. (2003). "Environmental exposure, DNA methylation, and 
gene regulation: lessons from diethylstilbesterol- induced cancers." Ann N Y Acad 
Sci 983: 161-9. 

Loening-Baucke, V. (1991). "Lichen sclerosus et atrophicus in children." Am J Dis Child 
145(9): 1058-61. 

Mabuchi, K., D. S. Bross, et al. (1985). "Epidemiology of cancer of the vulva. A case-
control study." Cancer 55(8): 1843-8. 

Maruyama, R., S. Toyooka, et al. (2001). "Aberrant promoter methylation profile of 
bladder cancer and its relationship to clinicopathological features." Cancer Res 
61(24): 8659-63. 

Montelone, B. A. (1998). Mutation, Mutagens, and DNA Repair. 2004. 

Moore, L. E., W. Y. Huang, et al. (2003). "Epidemiologic considerations to assess altered 
DNA methylation from environmental exposures in cancer." Ann N Y Acad Sci 
983: 181-96. 

Morgan, D. O. (1995). "Principles of CDK regulation." Nature 374(6518): 131-4. 

Muegge, K., H. Young, et al. (2003). "Epigenetic control during lymphoid development 
and immune responses: aberrant regulation, viruses, and cancer." Ann N Y Acad 
Sci 983: 55-70. 

Murakami, H. and P. Nurse (2000). "DNA replication and damage checkpoints and 
meiotic cell cycle controls in the fission and budding yeasts." Biochem J 349(Pt 
1): 1-12. 

Nan, X., F. J. Campoy, et al. (1997). "MeCP2 is a transcriptional repressor with abundant 
binding sites in genomic chromatin." Cell 88(4): 471-81. 



www.manaraa.com

 56 

Nan, X., H. H. Ng, et al. (1998). "Transcriptional repression by the methyl-CpG-binding 
protein MeCP2 involves a histone deacetylase complex." Nature 393(6683): 386-
9. 

Neill, S. M., F. M. Tatnall, et al. (2002). "Guidelines for the management of lichen 
sclerosus." Br J Dermatol 147(4): 640-9. 

Nguyen, C. T., D. J. Weisenberger, et al. (2002). "Histone H3-lysine 9 methylation is 
associated with aberrant gene silencing in cancer cells and is rapidly reversed by 
5-aza-2'-deoxycytidine." Cancer Res 62(22): 6456-61. 

Nyirjesy, P. (2002). "Lichen Sclerosus and Other Conditions Mimicking Vulvovaginal 
Candidiasis." Curr Infect Dis Rep 4(6): 520-524. 

Palmisano, W. A., K. K. Divine, et al. (2000). "Predicting lung cancer by detecting 
aberrant promoter methylation in sputum." Cancer Res 60(21): 5954-8. 

Pitot, H. C. and Y. P. Dragan (2001). Chemical Carcinogenesis. Casarett and Doull's 
Toxicology: The Basic Science of Poisons. C. D. Klaassen. New York, McGraw-
Hill: 241-319. 

Preston, R. J. and G. R. Hoffmann (2001). Genetic Toxicology. Casarett and Doull's 
Toxicology: The Basic Science of Poisons. C. D. Klaassen. New York, McGraw-
Hil: 321-350. 

Reik, W., A. Collick, et al. (1987). "Genomic imprinting determines methylation of 
parental alleles in transgenic mice." Nature 328(6127): 248-51. 

Reik, W. and J. Walter (2001). "Genomic imprinting: parental influence on the genome." 
Nat Rev Genet 2(1): 21-32. 

Reynisdottir, I. and J. Massague (1997). "The subcellular locations of p15(Ink4b) and 
p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2." Genes 
Dev 11(4): 492-503. 

Ross, S. A. (2003). "Diet and DNA methylation interactions in cancer prevention." Ann 
N Y Acad Sci 983: 197-207. 

Satoh, A., M. Toyota, et al. (2002). "DNA methylation and histone deacetylation 
associated with silencing DAP kinase gene expression in colorectal and gastric 
cancers." Br J Cancer 86(11): 1817-23. 

Scurry, J. P. and K. Vanin (1997). "Vulvar squamous cell carcinoma and lichen 
sclerosus." Australas J Dermatol 38 Suppl 1: S20-5. 

Serewko, M. M., C. Popa, et al. (2002). "Alterations in gene expression and activity 
during squamous cell carcinoma development." Cancer Res 62(13): 3759-65. 



www.manaraa.com

 57 

Sieber, O. M., K. Heinimann, et al. (2003). "Genomic instability--the engine of 
tumorigenesis?" Nat Rev Cancer 3(9): 701-8. 

Strathdee, G. and R. Brown (2002). "Aberrant DNA methylation in cancer: potential 
clinical interventions." Expert Rev Mol Med 2002: 1-17. 

Sutherland, J. E. and M. Costa (2003). "Epigenetics and the environment." Ann N Y 
Acad Sci 983: 151-60. 

Thiagalingam, S., K. H. Cheng, et al. (2003). "Histone deacetylases: unique players in 
shaping the epigenetic histone code." Ann N Y Acad Sci 983: 84-100. 

Turner, B. M. (1998). "Histone acetylation as an epigenetic determinant of long-term 
transcriptional competence." Cell Mol Life Sci 54(1): 21-31. 

Varmus, H. and R. A. Weinberg (1993). Genes and the biology of Cancer. New York, 
Scientific American Library. 

Verma, M. (2003). "Viral genes and methylation." Ann N Y Acad Sci 983: 170-80. 

Verma, M., B. K. Dunn, et al. (2003). "Early detection and risk assessment: proceedings 
and recommendations from the Workshop on Epigenetics in Cancer Prevention." 
Ann N Y Acad Sci 983: 298-319. 

Verona, R. I. and M. S. Bartolomei (2003). The Structure, Regulation and Function of the 
Imprinted H19 RNA. Non-coding RNA. J. Barciszewski and V. Erdmann, 
Eureaka Pubmed. 

Vilmer, C., B. Cavelier-Balloy, et al. (1998). "Analysis of alterations adjacent to invasive 
vulvar carcinoma and their relationship with the associated carcinoma: a study of 
67 cases." Eur J Gynaecol Oncol 19(1): 25-31. 

Vousden, K. H. and X. Lu (2002). "Live or let die: the cell's response to p53." Nat Rev 
Cancer 2(8): 594-604. 

Wallace, H. J. (1971). "Lichen sclerosus et atrophicus." Trans St Johns Hosp Dermatol 
Soc 57(1): 9-30. 

Wolffe, A. P. and M. A. Matzke (1999). "Epigene tics: regulation through repression." 
Science 286(5439): 481-6. 

Wong, I. H. (2001). "Methylation profiling of human cancers in blood: molecular 
monitoring and prognostication (review)." Int J Oncol 19(6): 1319-24. 

Xing, E. P., Y. Nie, et al. (1999). "Mechanisms of inactivation of p14ARF, p15INK4b, 
and p16INK4a genes in human esophageal squamous cell carcinoma." Clin 
Cancer Res 5(10): 2704-13. 



www.manaraa.com

 58 

Xing, E. P., Y. Nie, et al. (1999). "Aberrant methylation of p16INK4a and deletion of 
p15INK4b are frequent events in human esophageal cancer in Linxian, China." 
Carcinogenesis 20(1): 77-84. 

Yeh, K. T., J. G. Chang, et al. (2003). "Epigenetic changes of tumor suppressor genes, 
P15, P16, VHL and P53 in oral cancer." Oncol Rep 10(3): 659-63. 

Zar, J. H. (1999). Biostatistical Analysis. Upper Saddle River, New Jersey, Prentice-Hall 
Inc. 

Zhong, S., M. W. Tang, et al. (2002). "Silencing of GSTP1 gene by CpG island DNA 
hypermethylation in HBV-associated hepatocellular carcinomas." Clin Cancer 
Res 8(4): 1087-92. 



www.manaraa.com

 59 

APPENDIX A 
 
 
 

PHENOL AND CHLOROFORM EXTRACTION PROCEDURE 

Preparation of Genomic DNA from Mammalian Tissue  

DNA Isolation 

1. Excise an immediately mince tissue quickly and freeze in liquid nitrogen.  
2. Grind 200 mg to 1g tissues with prechilled mortar and pestle, or crush with hammer to 

fine powder.  
3. Add 500 µl grinding buffer to the tissue in a 1.5 ml Eppendorf tube and vortex for several 

minutes. 
4. Spin the samples in a microfuge for 15 minutes. 
5. Decant the solution and add 500 µl of lysis buffer and add 10 µl (6 Units) of proteinase K 

to each sample.  Digest at 37° for 12 hours. 
6. Add 500 µl of phenol to each tube.  Vortex briefly and centrifuge for 10 minutes. 
7. Making certain not to disturb the interphase, transfer aqueous top solution to a clean 

labeled tube and add 500 µl of chloroform.  Vortex briefly and centrifuge for 10 minutes. 
8. If a white precipitate is present at the aqueous/organic interface, reextract the organic 

phase and pool aqueous phases.  
9. Carefully remove the top aqueous phase containing the DNA using a 200 ul pipettor and 

transfer to a new tube.  
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APPENDIX B 

 

ETHANOL PRECIPITATION OF DNA 

1. Add 1/10 volume of 3M sodium acetate, pH 5.2, to the solution of DNA. Mix by 
vortexing briefly or by flicking the tube several times with your finger.  

2. Add 2 to 2.5 volumes of ice cold 100% ethanol. Mix by vortexing and place in crushed 
dry ice for 5 minutes or longer.  Alternately, the tubes can be placed at -80° for 1 hour or 
at -20° overnight. 

3. Spin 5 minutes in a microcentrifuge at high speed and remove the supernatant.  
4. Add 1 ml of room temperature 70% ethanol. Invert the tube several times and 

microcentrifuge as in step 6.  
5. Remove the supernatant. Dry the pellet in a desiccator under vacuum or in a hood.  
6. Dissolve the dry pellet in an appropriate volume of water or TE buffer (10mM Tris-HCL, 

1mM EDTA), pH8.0  
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APPENDIX C 

 

BISULFITE TREATMENT OF DNA 
 

This protocol was adapted from Frommer et.al.1992.   

1. Dilute DNA (up to 2 mg) into 50 ml with distilled H2O.  
2. Add 5.5 ml of 2M NaOH.  
3. Incubate at 37°C for 10 minutes (to create single stranded DNA).  
4. Add 30 ml of 10 mM hydroquinone (Sigma) to each tube, freshly prepared by adding 55 

mg of hydroquinone to 50 ml of water.  
5. Add 520 ml freshly prepared 3M Sodium bisulfite (Sigma S-8890), prepared by adding 

1.88 gm of sodium bisulfite per 5 ml of H2O, and adjusting pH to 5.0 with NaOH.  
6. Assure that reagents are mixed with DNA.  
7. Layer with mineral oil.  
8. Incubate at 50°C for 16 hours (avoid incubations of much longer duration as methylated 

C will start converting to T).  
9. Remove oil.  
10. Add 1 ml of DNA wizard cleanup (Promega A7280) to each tube and add mixture to 

miniprep column in kit.  
11. Apply vacuum (manifold makes this convenient).  
12. Wash with 2 ml of 80% isopropanol.  
13. Place column in clean, labeled 1.5 ml tube.  
14. Add 50 ml of heated water (60-70°C).  
15. Spin tube/column in microfuge for 1 minute.  
16. Add 5.5 ml of 3 M NaOH to each tube, and incubate at room temperature for 5 minutes.  
17. Add 1 ml glycogen as carrier (we use Boehringer glycogen, undiluted).  
18. Add 33 ml of 10 M NH4Ac, and 3 volumes of ethanol.  
19. Precipitate DNA as normal (overnight at -20°C, spin 30 mins), wash with 70% ethanol, 

dry pellet and resuspend in 20 ml water.  
20. Treat DNA like RNA (keep cold, minimize freeze/thaws, store at -20°C)  
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APPENDIX D 

 

METHYLATION SPECIFIC POLYMERASE CHIAN REACTION 

 This protocol was adapted from other protocols to allow for consistent results using the 

primers for this experiment only.  Primers are all unique in that annealing is optimal at different 

temperatures.  Other factors such as MgCl2 concentration must be optimized for the primers and 

type of PCR that is to be utilized.   

1. Prepare a master mix (on ice) containing the following for each sample to be analyzed.  
Add 10% to each total volume to account for pipetting errors.  

2. For MSP use a 25uL reaction containing the following. 
a. 2.5 µl 10X taq gold buffer  

 b. 3.0 µl of 25mM MgCl2 
 c. 0.125 µl taq gold polymerase 
 d. 2.5 µl Redi-Load 
 e. 1.0 µl 10mM total dNTP’s 
 d. Primers at .5 µM final concentration. 

3. Add water filtered in a 0.2 µM filter to achieve final volume of master mix and vortex 
briefly. 

4. Distribute 24 µl in to each 200 µl tube.  Add 50 ng of DNA to each reaction (If 1 µg 
DNA was dilute to 40 µl after bisulfite treatement use 2ul.)   

5. If not using a thermal cycler with a heated lid cover the samples with mineral oil. 
 
*Notes on nested PCR 
 
 If ‘nested’ PCR is to be used, the above steps should be using the outside primers.  

Subsequent PCR’s should be set up with 23 µl of the master mix in each tube.  4 µl of 

product from the first PCR will be used for each sample.  2 µl will be used with the 

methylated primers and 2 µl will be used with the unmethylated primers.   

Thermal Cycling Parameters  
  

1. Initial Denaturation.  For Amplitaq Gold Polymerase this is performed at 95° for 9 
minutes.  This is to activate the thermostable properties. 
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2. Cycling.  Amplification involves 20 to 40 cycles. For the first step in a ‘nested’  PCR 
30 cycles are used, followed by the inside PCR at 30 or 35 cycles.  a  denaturing step at 95 
for 1 minute Anealing.  Annealing should be at the  temperature that has been found to 
be  optimal for the primers in use for 1  minute. 
 Extension.  Occurs with most reactions at 72°.  This should be a one minute step. 
2. Final Extension.  Seven minutes at 72°. 
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APPENDIX E 
 
 
 

AGAROSE GEL ELECTROPHORESIS 
 

1. Prepare a 2 – 3% agarose gel by adding the appropriate amount of agarose to TBE buffer.  
The total amount of gel should be determined by the size of the gel apparatus, and the 
thickness required for sufficient loading of DNA product. 

2. Microwave the gel in a Pyrex flask until boiling.  Continue to heat until all agarose 
particles are melted.   

3. Let the gel cool at room temperature until it is approximately 60°.   
4. Add ethidium bromide to a final concentration of 0.5 mg / ml. 
5. Pour into the gel casting apparatus and let cool till the gel reaches room temperature. 
6. Place the gel and the casting apparatus into the gel unit.  Fill with TBE until the gel is 

covered by 1mm of TBE. 
7. If DNA rediload is used with the PCR reaction then the product can be loaded directly 

into the gel.  If not add approximately 1 - 2 µl of bromophenol blue loading dye.   
8. Cover and run at 5V per centimeter of gel until the loading dye travels 4 – 5 cm.  
9. Visualize with UV on a gel viewing apparatus.  
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APPENDIX F 
 

 
p16 BISULFITE TREATED SEQUENCE 

 
  
Accession Number NM_058197 
 
                                 (Outside Forward Primer) GA AGAAAGAGGA 
   61 AGGATTTGAG GGATAGGGTC GGAGGGGGTT TTTTCGTTAG TATCGGAGGA AGAAAGAGGA 
      TCCTAAACTC CCTATCCCAG CCTCCCCCAA AAAAGCAATC ATAGCCTCCT TCTTTCTCCT                                                            
                                                                   
   
 
                   TTATTAGA GGGTGGGGCG GATCGC (Methylated Forward)è                  
      GGGGTTGGè   TTATTAGA GGGTGGGGTG GATTGT (Unmethylated Forward)è                                       
  121 GGGGTTGGTT GGTTATTAGA GGGTGGGGCG GATCGCGTGC GTTCGGCGGT TGCGGAGAGG 
      CCCCAACCAA CCAATAATCT CCCACCCCGC CTAGCGCACG CAAGCCCCCA ACGCCTCTCC                           
                                                                   
 
   
   
 
  181 GGGAGAGTAG GTAGCGGGCG GCGGGGAGTA GTATGGAGTC GGCGGCGGGGA GTAGTATGG 
      CCCTCTCATC CATCGCCCGC CGCCCCTCAT CATACCTCAG CCGCCGCCCCT CATCATACC                                                            
                                                                   
 
   
 
 
  241 AGTTTTCGGT TGATTGGTTG GTTACGGTCG CGGTTCGGGG TCGGGTAGAGG AGGTGCGGG 
      TCAAAAGCCA ACTAACCAAC CAATGCCAGC GCCAAGCCCC AGCCCATCTCC TCCACGCCC                                                            
                           çAATGCCAGC GCCAAGCCCC AG (Methylated Reverse)                                   
                           çAATACCAAC ACCAAACCCC AAC (Unmethylated Reverse) 
 
 
 
  301 CGTTGTTGGA GGCGGGGGCG TTGTTTAACG TATCGAATAG TTACGGTCGGA GGTCGATTT 
      GCAACAACCT CCGCCCCCGC AACAAATTGC ATAGCTTATC AATGCCAGCCT CCAGCTAAA                                                            
                                                                   
 
 
 
   
  361 AGGTGGGTAG AAGGTTTGTA GCGGGAGTAG GGGATGGCGG GCGATTTTGGA GGACGAAGT 
      TCCACCCATC TTCCAAACAT CGCCCTCATC CCCTACCGCC CGCTAAAACCT CCTGCTTCA                                                            
     çCCACCCATC TCCCAAACAT C (Outside Reverse Primer)                                                    
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APPENDIX G 
 
 

p15 BISULFITE TREATED SEQUENCE 
 
 

Accession Number S75756 
 
              TT AGTTGAAAAC GGAATTTTTT GTC (Methylated Forward)è                  
               T AGTTGAAAAT GGAATTTTTT GTTG (Unmethylated Forward)è                                       
   61 TTTTTGGTTT AGTTGAAAAC GGAATTTTTT GTCGGTTGGT TTTTTATTTT GTTAGAGCGA 
      AAAAACCAAA TCAACTTTTG CCTTAAAAAA CAGCCAACCA AAAAATAAAA CAATCTCGCT        
        
 
   
  121 GGCGGGGTAG TGAGGATTTC GCGACGCGTT CGTATTTTGC GGTTAGAGCG GTTTTGAGTT 
      CCGCCCCATC ACTCCTAAAG CGCTGCGCAA GCATAAAACG CCAATCTCGC CAAAACTCAA                                                                  
                                                                   
 
  181 CGGTTGCGTT CGCGTTAGGC GTTTTTTTTT AGAAGTAATT TAGGCGCGTT CGTTGGTTTT 
      GCCAACGCAA GCGCAATCCG CAAAAAAAAA TCTTCATTAA ATCCGCGCAA GCAACCAAAA                                                                  
                                                                   
 
   
  241 TGAGCGTTAG GAAAAGTTCG GAGTTAACGA TCGGTCGTTC GGTTATTGTA CGGGGTTTTA 
      ACTCGCAATC CTTTTCAAGC CTCAATTGCT AGCCAGCAAG CCAATAACAT GCCCCAAAAT 
        çGCAATC CTTTTCAAGC CTCAATTG (Methylated Reverse) 
      çTCACAATC CTTTTCAAAC CTCAATTA (Unmethylated Reverse) 
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APPENDIX H 
 
 

GSTP1 BISULFITE TREATED SEQUENCE 
 
Accession Number AY324387 
 
                (Outside Forward Primer) GGATTTT AGGGCGTTTT TTTè    G 
1681 AGGTTTTTTC GGTTAGTTGC GCGGCGATTT CGGGGATTTT AGGGCGTTTT TTTGCGGTCG 
     TCCAAAAAAG CCAATCAACG CGCCGCTAAA GCCCCTAAAA TCCCGCAAAA AAACGCCAGC 
      
 
 
        TTCGGGG TGTAGCGGTC GTC (Methylated Forward)è                  
     ATGTTTGGGG TGTAGTG (Unmethylated Forward)è                                        
1741 ACGTTCGGGG TGTAGCGGTC GTCGGGGTTG GGGTCGGCGG GAGTTCGCGG GATTTTTTAG 
     TGCAAGCCCC ACATCGCCAG CAGCCCCAAC CCCAGCCGCC CTCAAGCGCC CTAAAAAATC 
         
 
    
 
 
1801 AAGAGCGGTC GGCGTCGTGA TTTAGTATTG GGGCGGAGCG GGGCGGGATT ATTTTTATAA 
     TTCTCGCCAG CCGCAGCACT AAATCATAAC CCCGCCTCGC CCCGCCCTAA TAAAAATATT 
                çGCAGCACT AAATCATAAC CCCG (Methylated Reverse) 
                çACAACACT AAATCATAAC CCCACC (Unmethylated Reverse) 
                                                   çCCCTAA TAAAAATATT 
 
 
1861 GGTTCGGAGG TCGCGAGGTT TTCGTTGGAG TTTCGTCGTC GTAGTTTTCG TTATTAGTGA 
     CCAAGCCTCC AGCGCTCCAA AAGCAACCTC AAAGCAGCAG CATCAAAAGC AATAATCACT 
     CCAAGCC (Outside Reverse Primer) 
 
 
 
 
1921 GTACGCGCGG TTCGCGTTTT CGGGGATGGG GTTTAGAGTT TTTAGTATGG GGTTAATTCG 
     CATGCGCGCC AAGCGCAAAA GCCCCTACCC CAAATCTCAA AAATCATACC CCAATTAAGC 
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VITA 
 
 

 Kirk Robert Hutchinson was born in Baton Rouge, Louisiana, on June 26, 1978.  His 

loving parents were living in Baton Rouge at the time, where his mother was student teaching 

and his father was in the last year of his Ph.D.  Perhaps his longing to be an eternal student was 

inherited.   

 Upon completion of his final degree, Kirk’s father moved this small family to 

Winnsboro, Louisiana, where Kirk would enjoy growing up in a town with less than six thousand 

residents.  Living in a quiet town, Kirk was able to enjoy many outdoor activities such as fishing 

with his parents.  Kirk attended Winnsboro public schools until the beginning of his senior year.  

It was this year that his father would have the opportunity to advance with his position through 

Louisiana State University.  The still rather small, but close family moved to Saint Joseph, 

Louisiana, on the bank of the Mississippi River in Tensas Parish.  It was in Saint Joseph that 

despite a rough year (one in which Kirk would barely skate through trigonometry), Kirk would 

graduate from Tensas Academy.  Perhaps it was the move in general, or the fact that there could 

be a city that was one-sixth the size of Winnsboro that was so shocking.  In fact it was said that 

when Kirk joined the class at Tensas Academy he was the sixteenth student, therefore 

completing the “Sweet Sixteen.”  Yes this does refer to a graduating class of sixteen. 

 It would seem like Kirk did not have a choice in deciding his academic career, for he did 

enroll in Louisiana State University in Baton Rouge.  Kirk began his academic career in 

environmental management systems, but would change his mind and his major at whim.  His 

first four years were very enjoyable, filled with late nights and partying.  In fact Kirk partied 

with a focus and tenacity, which was never quite evident in his studies.  It was the hand of God 

that pushed Kirk through his Bachelor of Science allowing him to graduate in December 2000.   
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 Kirk, still unsure of his future dreams enrolled again at Louisiana State University as a 

non-matriculating student.  It was at the end of this semester that Kirk obtained a Research 

Associate position in The Department of Agronomy.  After a few months in this position he 

decided that soils were definitely not of interest to him.  He then applied to The Department of 

Environmental Studies.  The decision was probably based more on the fact that he would have 

two environmental titles in future degrees more than anything (two is better than one.)  Floating 

through the department Kirk stumbled upon Dr. Vincent Wilson.  After a brief visit he chose Dr. 

Wilson as his major professor.  The choice, although Kirk did not know it at the time, was a wise 

one.  Kirk began to enjoy the molecular research that Dr. Wilson had exposed him to in the 

laboratory.  In fact he enjoyed molecular methods enough to change positions from The 

Agronomy Department to The Department of Biological Sciences.  Kirk will be graduating at the 

end of the summer semester 2004, still lacking good study habits, but learning them slowly.   

 He was joined with his gorgeous wife Karlye in December of 2003.  Their future remains 

unknown.  Karlye is considering graduate school at the moment and Kirk, with his genetic 

predisposition to graduate school, is also unable to break away from the academic world.  Kirk 

will be applying to graduate schools to focus further on the cancer research that was introduced 

to him by Dr. Wilson. 
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